题目内容
已知数列{an}满足a1=1,an+1=
.设bn=anan+1-
,Sn=b1+b2+…+bn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:Sn≤
(n≤N*).
| 3an |
| 3+2an |
| 1 |
| 9 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:Sn≤
| 3 |
| 2 |
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)利用递推思想求出数列的前4项,由此猜想an=
.再用数学归纳法证明.
(Ⅱ)由bn=anan+1-
=
•
-
=
(
-
)-
,利用裂项法能证明Sn<
(n∈N*).
| 3 |
| 2n+1 |
(Ⅱ)由bn=anan+1-
| 1 |
| 9 |
| 3 |
| (2n+1) |
| 3 |
| (2n+3) |
| 1 |
| 9 |
| 9 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 9 |
| 3 |
| 2 |
解答:
解:(Ⅰ)数列{an}满足a1=1,an+1=
,
a2=
=
,
a3=
=
,
a4=
=
,
由此猜想an=
.
下面用数学归纳法证明:
①n=1时,a1=
=1,成立.
②假设n=k时成立,即ak=
,
则当n=k+1时,
ak+1=
=
=
=
,也成立.
由①②,得an=
.
(Ⅱ)bn=anan+1-
=
•
-
=
(
-
)-
,
∴Sn=b1+b2+…+bn
=
(
-
+
-
+…+
-
)-
=
(
-
)-
=
-
-
.
∴Sn<
(n∈N*).
| 3an |
| 3+2an |
a2=
| 3 |
| 3+2 |
| 3 |
| 5 |
a3=
| ||
3+
|
| 3 |
| 7 |
a4=
| ||
3+
|
| 3 |
| 9 |
由此猜想an=
| 3 |
| 2n+1 |
下面用数学归纳法证明:
①n=1时,a1=
| 3 |
| 2×1+1 |
②假设n=k时成立,即ak=
| 3 |
| 2k+3 |
则当n=k+1时,
ak+1=
3×
| ||
3+2×
|
| 9 |
| 6k+3+6 |
| 3 |
| 2k+3 |
| 3 |
| 2(k+1)+1 |
由①②,得an=
| 3 |
| 2n+1 |
(Ⅱ)bn=anan+1-
| 1 |
| 9 |
| 3 |
| (2n+1) |
| 3 |
| (2n+3) |
| 1 |
| 9 |
| 9 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 9 |
∴Sn=b1+b2+…+bn
=
| 9 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| n |
| 9 |
=
| 9 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
| n |
| 9 |
=
| 3 |
| 2 |
| 9 |
| 2(2n+3) |
| n |
| 9 |
∴Sn<
| 3 |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要注意数学归纳法和裂项求和法的合理运用.
练习册系列答案
相关题目
函数f(x)=
的图象可能是( )
| ln|x| |
| x |
| A、 |
| B、 |
| C、 |
| D、 |
已知扇形的面积为
,半径为1,则该扇形的圆心角的弧度数是( )
| π |
| 6 |
A、
| ||
B、
| ||
C、
| ||
D、
|
执行如图所示的程序框图,输出的k的值为( )

| A、2 | B、3 | C、4 | D、5 |
已知等比数列{an}满足:a3•a7=
,则cosa5=( )
| π2 |
| 9 |
A、-
| ||||
B、-
| ||||
C、±
| ||||
D、±
|