题目内容
9.若$P=\sqrt{a+6}+\sqrt{a+7}$,$Q=\sqrt{a+5}+\sqrt{a+8}$,(a>-5),则P,Q的大小关系为( )| A. | P<Q | B. | P=Q | C. | P>Q | D. | 不能确定 |
分析 计算P2,Q2,比较(a+6)(a+7)和(a+5)(a+8)的大小关系,即可得出P2,Q2的大小关系,从而得出P,Q的大小关系.
解答 解:P2=2a+13+2$\sqrt{(a+6)(a+7)}$,Q2=2a+13+2$\sqrt{(a+5)(a+8)}$,
∵(a+6)(a+7)-(a+5)(a+8)=a2+13a+42-(a2+13a+40)=2>0,
∴(a+6)(a+7)>(a+5)(a+8),
∴$\sqrt{(a+6)(a+7)}$>$\sqrt{(a+5)(a+8)}$,
∴P2>Q2,
∴P>Q.
故选C.
点评 本题考查了不等式比较大小,属于基础题.
练习册系列答案
相关题目
19.已知$cos(α-\frac{π}{3})=\frac{4}{5}$,则$sin(α+\frac{π}{3})+sinα$等于( )
| A. | $\frac{{4\sqrt{3}}}{5}$ | B. | $\frac{{3\sqrt{3}}}{5}$ | C. | $-\frac{{3\sqrt{3}}}{5}$ | D. | $-\frac{{4\sqrt{3}}}{5}$ |
20.要证明x<$\sqrt{y}$,只要证明不等式M,不等式M不可能是( )
| A. | x2<y | B. | |x|<$\sqrt{y}$ | C. | -x<$\sqrt{y}$ | D. | x<0 |
17.已知△ABC中,∠A,∠B,∠C的对边长度分别为a,b,c,已知点O为该三角形的外接圆圆心,点D,E,F分别为边BC,AC,AB的中点,则OD:OE:OF=( )
| A. | a:b:c | B. | $\frac{1}{a}:\frac{1}{b}:\frac{1}{c}$ | C. | sinA:sinB:sinC | D. | cosA:cosB:cosC |
4.复数$\frac{(i-1)i}{2}$(i为虚数单位)的虚部是( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}i$ | D. | $-\frac{1}{2}i$ |
1.在△ABC中,角A,B,C所对边分别为a,b,c,且(2b-a)cosC=ccosA,c=3,$a+b=\sqrt{6}ab$,则△ABC的面积为( )
| A. | $\frac{{3\sqrt{3}}}{8}$ | B. | 2 | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{3\sqrt{3}}}{4}$ |