题目内容
某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要想安全通过隧道,应使车载货物高度h满足关系为( )
| A、h<4.5 |
| B、h>4.5 |
| C、h≤4.5 |
| D、h≥4.5 |
考点:不等关系与不等式
专题:不等式的解法及应用
分析:理解“限高”的含义是“≤”即可得出.
解答:
解:“限高4.5米”的意义为“h≤4.5”,
故选:C.
故选:C.
点评:本题考查了理解“限高”的含义是“≤”,属于基础题.
练习册系列答案
相关题目
“x2-4x+3>0”是“x<1或x>4”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知a、b、c满足a>b>c,且a+b+c=0,那么下列选项中不一定成立的是( )
| A、ab>ac |
| B、c(b-a)<0 |
| C、cb2<ab2 |
| D、ac(a-c)<0 |
如图程序运行后输出的结果为( )

| A、22;-22 |
| B、-22;22 |
| C、6;-6 |
| D、-6;6 |
设函数f(x)=
的定义域为集合A,集合B={x|x-a+1<0},若A∩B≠∅,则a的取值范围是( )
| x-2 |
| A、a>3 | B、a≥3 |
| C、a<3 | D、a≤3 |
若变量x,y满足条件
,则z=x+y的取值范围是( )
|
| A、(-∞,3] |
| B、[3,+∞) |
| C、[0,3] |
| D、[1,3] |
已知函数y=f(x)是定义在(-1,1)上的函数,且对于任意x1,x2∈(-1,1)且x1≠x2,都有
<0,则关于a的不等式f(1-a)<f(a2-1)的取值范围是( )
| f(x1)-f(x2) |
| x 1-x2 |
| A、-2<a<1 | ||
| B、a>1或a<-2 | ||
C、0<a<
| ||
| D、0<a<1 |