题目内容
(本题满分12分)设正项数列
的前
项和
,且满足
.
(Ⅰ)计算
的值,猜想
的通项公式,并证明你的结论;
(Ⅱ)设
是数列
的前
项和,证明:
.
(Ⅰ)
;
;
.猜想
,用数学归纳法证明;(Ⅱ)先利用数列知识求和,然后利用放缩法证明或者利用数学归纳法证明
解析试题分析:(Ⅰ)当n=1时,
,得
;
,得
;
,得
.猜想
2’
证明:(ⅰ)当n=1时,显然成立.
(ⅱ)假设当n=k时,
1’
则当n=k+1时,![]()
结合
,解得
2’
于是对于一切的自然数
,都有
1’
(Ⅱ)证法一:因为
, 3’
.3’
证法二:数学归纳法
证明:(ⅰ)当n=1时,
,
,
1’
(ⅱ)假设当n=k时,
1’
则当n=k+1时,![]()
要证:![]()
只需证:![]()
由于![]()
所以
3’
于是对于一切的自然数
,都有
1’
考点:本题考查了数学归纳法的运用
点评:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
练习册系列答案
相关题目