题目内容
1.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.点E和F分别在线段BC和DC上,且$\overline{BE}=\frac{2}{3}\overline{BC},\overline{DF}=\frac{1}{6}\overline{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的值为( )| A. | $\frac{5}{3}$ | B. | $\frac{14}{9}$ | C. | $\frac{29}{18}$ | D. | $\frac{4}{3}$ |
分析 根据平面向量数量积的公式和运算性质,进行运算求解即可.
解答
解:如图所示,
等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°,
∴BG=$\frac{1}{2}$BC=$\frac{1}{2}$,CD=2-1=1,∠BCD=120°,
∵$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{6}$$\overrightarrow{DC}$,
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AB}$+$\overrightarrow{BE}$)•($\overrightarrow{AD}$+$\overrightarrow{DF}$)=($\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{BC}$)•($\overrightarrow{AD}$+$\frac{1}{6}$$\overrightarrow{DC}$)
=$\overrightarrow{AB}$•$\overrightarrow{AD}$+$\frac{1}{6}$$\overrightarrow{AB}$•$\overrightarrow{DC}$+$\frac{2}{3}$$\overrightarrow{BC}$•$\overrightarrow{AD}$+$\frac{2}{3}$$\overrightarrow{BC}$•$\frac{1}{6}$$\overrightarrow{DC}$
=2×1×cos60°+$\frac{1}{6}$×2×1×cos0°+$\frac{2}{3}$×1×1×cos60°+$\frac{2}{3}$×$\frac{1}{6}$×1×1×cos120°
=1+$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{18}$=$\frac{29}{18}$.
故选:C.
点评 本题考查了平面向量的数量积运算问题,根据条件确定向量的长度和夹角是解决本题的关键.
| A. | {0} | B. | {0,3} | C. | {-1,0,3} | D. | {0,3,4} |
| A. | $\frac{1}{2}-p$ | B. | $\frac{1}{2}+p$ | C. | $\frac{1}{2}+\frac{p}{2}$ | D. | 1-p |
附:(随机变量ξ服从正态分布N(μ,δ2),则P(μ-δ<ξ<μ+δ)=68.26%,P(μ-2δ<ξ<μ+2δ)=95.44%
| A. | 6038 | B. | 6587 | C. | 7028 | D. | 7539 |
| A. | -4 | B. | -1 | C. | 4 | D. | 1 |
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{3}$ | D. | 2 |