题目内容
12.已知集合A={x|-1<x≤3},B={-2,-1,0,3,4},则A∩B=( )| A. | {0} | B. | {0,3} | C. | {-1,0,3} | D. | {0,3,4} |
分析 根据集合的交集的运算求出即可.
解答 解:∵A={x|-1<x≤3},B={-2,-1,0,3,4},
∴A∩B={0,3},
故选:B.
点评 本题考查集合的基本运算,考查计算能力,是一道基础题.
练习册系列答案
相关题目
12.若数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+n+1,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2006}}}}$等于( )
| A. | $\frac{4030}{2016}$ | B. | $\frac{2015}{2016}$ | C. | $\frac{4032}{2017}$ | D. | $\frac{2016}{2017}$ |
10.设函数y=f(x)在[a,b]上可导且单调递增,则函数g(x)=$\frac{f(x)-f(a)}{x-a}$在(a,b)上的单调性为( )
| A. | 单调递增 | B. | 单调递减 | C. | 不增不减 | D. | 无法判断 |
7.若sin($\frac{π}{6}$-α)=$\frac{1}{3}$,则2cos2($\frac{π}{6}$+$\frac{α}{2}$)-1=( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{7}{9}$ | D. | $-\frac{7}{9}$ |
4.
已知函数f(x)=2sin(ωx+φ)(ω>0.|φ|<$\frac{π}{2}$)的图象如图所示,则函数y=f(x)+ω的对称中心坐标为( )
| A. | ($\frac{2}{3}$kπ+$\frac{π}{24}$,$\frac{3}{2}$)(k∈Z) | B. | (3kπ-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z) | C. | ($\frac{1}{2}$kπ+$\frac{5π}{8}$,$\frac{3}{2}$)(k∈Z) | D. | ($\frac{3}{2}kπ$-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z) |
1.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.点E和F分别在线段BC和DC上,且$\overline{BE}=\frac{2}{3}\overline{BC},\overline{DF}=\frac{1}{6}\overline{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的值为( )
| A. | $\frac{5}{3}$ | B. | $\frac{14}{9}$ | C. | $\frac{29}{18}$ | D. | $\frac{4}{3}$ |
2.在△ABC中,若b=2,a=3,$cosC=-\frac{1}{4}$,则c=( )
| A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | 4 |