题目内容
若实数x,y满足条件
,则x-2y的最小值是( )
|
| A、-3 | B、-2 | C、-1 | D、0 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答:
解:设z=x-2y,则y=
x-
,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=
x-
,
由图象可知当直线y=
x-
,过点A时,直线y=
x-
的截距最大,此时z最小,
由
,解得
,代入目标函数z=x-2y,得z=-1-2=-3,
∴目标函数z=x-2y的最小值是-3.
故选:A
| 1 |
| 2 |
| z |
| 2 |
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=
| 1 |
| 2 |
| z |
| 2 |
由图象可知当直线y=
| 1 |
| 2 |
| z |
| 2 |
| 1 |
| 2 |
| z |
| 2 |
由
|
|
∴目标函数z=x-2y的最小值是-3.
故选:A
点评:本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
练习册系列答案
相关题目
已知双曲线C:
-
=1(a>0,b>0)离心率为3,直线y=2与双曲线C的两个交点间的距离为
,则双曲线C的方程是( )
| x2 |
| a2 |
| y2 |
| b2 |
| 6 |
| A、2x2-y2=1 | ||||
B、x2-
| ||||
C、
| ||||
D、
|
等差数列前n项和为Sn,若a4+a7+a13=30,则S15的值是( )
| A、150 | B、65 | C、70 | D、75 |
双曲线
-
=1的离心率的值为( )
| y2 |
| 4 |
| x2 |
| 5 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
若函数f(x)=ax-b只有一个零点为2,则g(x)=bx2+ax的零点是( )
| A、0,2 | ||
B、0,
| ||
C、0,-
| ||
D、2,
|
执行如图所示的程序框图,若输入a1=2,a2=0,a3=1,a4=4,则计算机输出的结果是( )

| A、2 | B、0 | C、1 | D、4 |
已知全集U=R,集合A={y|y≥1},B=(-∞,-1)∪(2,+∞),则A∪(∁UB)=( )
| A、[1,2] |
| B、[1,+∞) |
| C、[-1,+∞) |
| D、(-∞,-1]∪[1,+∞) |