题目内容
某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.当销售单价为6元时,日均销售量为480桶,且销售单价每增加1元,日均销售量就减少40桶.那么,这个经营部怎样定价才能获得最大利润?
设定价在进价的基础上增加x元,日销售利润为y元,则
y=x[480-40(x-1)]-200,
由于x>0,且520-40x>0,所以,0<x<13;
即y=-40x2+520x-200,0<x<13.
所以,当x=-
=6.5时,y取最大值.
答:当销售单价定位11.5元时,经营部可获得最大利润.
y=x[480-40(x-1)]-200,
由于x>0,且520-40x>0,所以,0<x<13;
即y=-40x2+520x-200,0<x<13.
所以,当x=-
| 520 |
| 2×(-40) |
答:当销售单价定位11.5元时,经营部可获得最大利润.
练习册系列答案
相关题目