题目内容

16.已知函数f(x)对任意的x∈R,都有f(-x)+f(x)=-6,且当x≥0时,f(x)=2x-4,定义在R上的函数g(x)=a(x-a)(x+a+1),两函数同时满足:?x∈R,都有f(x)<0或g(x)<0;?x∈(-∞,-1),f(x)•g(x)<0,则实数a的取值范围为(  )
A.(-3,0)B.$(-3,-\frac{1}{2})$C.(-3,-1)D.(-3,-1]

分析 求出f(x)的解析式,根据条件得出g(x)需满足的条件,根据二次函数额性质列出不等式解出a的范围.

解答 解:∵f(-x)+f(x)=-6,∴函数f(x)的图象关于点(0,-3)对称,
∴f(x)=$\left\{\begin{array}{l}{{2}^{x}-4,x≥0}\\{{-2}^{-x}-2,x<0}\end{array}\right.$.
∴当x<2时f(x)<0,当x≥2,f(x)≥0.
为同时满足两条件,则需函数g(x)满足①当x≥2时,g(x)<0恒成立;②当x<-1时,g(x)>0有解.
(1)当a≥0时,显然g(x)不满足条件①;
(2)当a<0时,方程g(x)=0的两根为x1=a,x2=-a-1,
∵a<0,∴-a-1>-1,
∴$\left\{\begin{array}{l}a<-1\\-a-1<2\end{array}\right.$,解得-3<a<-1.
故选C.

点评 本题考查了函数的对称性应用,函数解析式的求解,二次函数的性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网