题目内容

18.已知α,β都是锐角,sinα=$\frac{3}{5}$,tan(α-β)=-$\frac{1}{3}$,求tanβ的值.

分析 由条件利用同角三角函数的基本关系,求得tanα的值,再利用两角差的正切公式,求得tanβ=tan[α-(α-β)]的值.

解答 解:∵α,β都是锐角,sinα=$\frac{3}{5}$,tan(α-β)=-$\frac{1}{3}$,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{4}{5}$,∴tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$,
∴tanβ=tan[α-(α-β)]=$\frac{tanα-tan(α-β)}{1+tan•tan(α-β)}$=$\frac{\frac{3}{4}+\frac{1}{3}}{1-\frac{3}{4}•\frac{1}{3}}$=$\frac{13}{9}$.

点评 本题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网