ÌâÄ¿ÄÚÈÝ

13£®ÒÑÖªÍÖÔ²x2$+\frac{4}{3}{y}^{2}$=1µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬PÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬OÎª×ø±êÔ­µã£¬¶¯µãMÂú×ã|OM|2=|PF1|2+|PF2|2+2$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$£¬O¡¢P¡¢MÈýµã¹²Ïߣ¬¹ý¶¨µãQ£¨0£¬2£©µÄÖ±ÏßlÓ붯µãMµÄ¹ì¼£½»ÓÚG¡¢HÁ½µã£¨GÔÚQ¡¢HÖ®¼ä£©£®
£¨I£©Ç󶯵ãMµÄ¹ì¼£·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlµÄбÂÊk£¾0£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãN£¨m£¬0£©Ê¹µÃNH=NG£¿Èô´æÔÚ£¬Çó³ömµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÏòÁ¿µÈʽ¿ÉµÃ$|\overrightarrow{OM}{|}^{2}=4|\overrightarrow{OP}{|}^{2}$£¬ÔÙÓÉO¡¢P¡¢MÈýµã¹²Ï߿ɵÃ$\overrightarrow{OM}=¡À2\overrightarrow{OP}$£¬ÉèM£¨x£¬y£©£¬ÓÃMµÄ×ø±ê±íʾPµÄ×ø±ê£¬°ÑPµÄ×ø±ê´úÈëÍÖÔ²·½³Ì¿ÉµÃ¶¯µãMµÄ¹ì¼£·½³Ì£»
£¨¢ò£©ÔÚxÖáÉÏ´æÔÚµãN£¨m£¬0£©£¬Ê¹µÃNH=NG£¬ÉèlµÄ·½³ÌΪy=kx+2£¨k£¾0£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏ£¨$\overrightarrow{NG}+\overrightarrow{NH}$£©•$\overrightarrow{GH}$=0¼´¿ÉÇó³öʵÊýmµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÓÉ|OM|2=|PF1|2+|PF2|2+2$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$£¬
µÃ$|\overrightarrow{OM}{|}^{2}=|\overrightarrow{P{F}_{1}}{|}^{2}+|\overrightarrow{P{F}_{2}}{|}^{2}+2\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$£¬¼´$|\overrightarrow{OM}{|}^{2}=£¨\overrightarrow{P{F}_{1}}+\overrightarrow{P{F}_{2}}£©^{2}$=$£¨-2\overrightarrow{OP}£©^{2}=4|\overrightarrow{OP}{|}^{2}$£¬
¡ßO¡¢P¡¢MÈýµã¹²Ïߣ¬
¡à$\overrightarrow{OM}=¡À2\overrightarrow{OP}$£¬ÉèM£¨x£¬y£©£¬ÔòP£¨$\frac{x}{2}£¬\frac{y}{2}$£©»òP£¨-$\frac{x}{2}£¬-\frac{y}{2}$£©£¬
ÓÉPÔÚÍÖÔ²x2$+\frac{4}{3}{y}^{2}$=1ÉÏ£¬µÃ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¬
¹Ê¶¯µãMµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨¢ò£©ÔÚxÖáÉÏ´æÔÚµãN£¨m£¬0£©£¬Ê¹µÃʹµÃNH=NG£®
ÀíÓÉÈçÏ£º
ÉèlµÄ·½³ÌΪy=kx+2£¨k£¾0£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=kx+2}\end{array}\right.$£¬µÃ£¨3+4k2£©x2+16kx+4=0£®
¡ßÖ±ÏßlÓëÍÖÔ²ÓÐÁ½¸ö½»µã£¬
¡à¡÷=256k2-16£¨3+4k2£©=4£¨k2-1£©£¾0£¬
¡àk2£¾1£¬
ÓÖ¡ßk£¾0£¬¡àk£¾1£®
ÉèG£¨x1£¬y1£©£¬H£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{-16k}{3+4{k}^{2}}$£®
¡à$\overrightarrow{NG}+\overrightarrow{NH}$=£¨x1-m£¬y1£©+£¨x2-m£¬y2£©=£¨x1+x2-2m£¬y1+y2£©
=£¨x1+x2-2m£¬k£¨x1+x2£©+4£©£¬
$\overrightarrow{GH}$=£¨x2-x1£¬y2-y1£©=£¨x2-x1£¬k£¨x2-x1£©£©£®
ÓÉÓÚNH=NG£¬Ôò£¨$\overrightarrow{NG}+\overrightarrow{NH}$£©•$\overrightarrow{GH}$=0£®
¡à£¨x2-x1£©[£¨x1+x2£©-2m]+k£¨x2-x1£©[k£¨x1+x2£©+4]=0£®
¹Ê£¨x2-x1£©[£¨x1+x2£©-2m+k2£¨x1+x2£©+4k]=0£®
¼´£¨x2-x1£©[£¨1+k2£©£¨x1+x2£©+4k-2m]=0
¡ßk£¾0£¬¡àx2-x1¡Ù0£¬
¡à£¨1+k2£©£¨x1+x2£©+4k-2m=0£¬
¡à£¨1+k2£©£¨$\frac{-16k}{3+4{k}^{2}}$£©+4k-2m=0£¬½âµÃm=$\frac{-2}{\frac{3}{k}+4k}$£¬
Éèy=$\frac{3}{k}+4k$£¬µ±k£¾1ʱ£¬y¡ä=-$\frac{3}{{k}^{2}}+4$=$\frac{4{k}^{2}-3}{{k}^{2}}$£¾0£¬
¡àº¯Êýy=$\frac{3}{k}+4k$ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡ày£¾7£¬
¡àm=$\frac{-2}{y}$£¾-$\frac{2}{7}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³Ì£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éΤ´ï¶¨Àí£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø