题目内容
20.已知圆C:(x-1)2+(y-4)2=10和点M(5,t),若圆C上存在两点A,B,使得MA⊥MB,则实数t的取值范围是[2,6].分析 由题意,|CM|≤$\sqrt{10}$×$\sqrt{2}$,即可求出实数t的取值范围.
解答
解:由题意圆C:(x-1)2+(y-4)2=10和点M(5,t),若圆C上存在两点A,B,使得MA⊥MB,可得|CM|≤$\sqrt{10}$×$\sqrt{2}$,
∴(5-1)2+(t-4)2≤20,
∴2≤t≤6,
故答案为:[2,6].
点评 本题考查直线与圆的位置关系,考查学生的计算能力,正确转化是关键.
练习册系列答案
相关题目
14.已知直线y=ax与圆C:(x-a)2+(y-1)2=a2-1交于A,B两点,且∠ACB=60°,则圆的面积为( )
| A. | 6π | B. | 36π | C. | 7π | D. | 49π |
15.大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,则其中2人恰好乘坐同一部电梯的概率为( )
| A. | $\frac{9}{16}$ | B. | $\frac{7}{16}$ | C. | $\frac{9}{32}$ | D. | $\frac{7}{32}$ |
5.为了调查某大学学生在周日上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果:表1:男生上网时间与频数分布表
表2:女生上网时间与频数分布表
(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成表3的2×2列联表(此表应画在答题卷上),并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.
表3:
附:k2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
| 上网时间(分钟) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
| 人数 | 5 | 25 | 30 | 25 | 15 |
| 上网时间(分钟) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
| 人数 | 10 | 20 | 40 | 20 | 10 |
(Ⅱ)完成表3的2×2列联表(此表应画在答题卷上),并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.
表3:
| 上网时间少于60分钟 | 上网时间不少于60分钟 | 合计 | |
| 男生 | 60 | 40 | 100 |
| 女生 | 70 | 30 | 100 |
| 合计 | 130 | 70 | 200 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
12.已知b≥a>0,若存在实数x,y满足0≤x≤a,0≤y≤b,(x-a)2+(y-b)2=x2+b2=a2+y2,则$\frac{b}{a}$的最大值为$\frac{2\sqrt{3}}{3}$.
10.
已知变量x,y之间具有线性相关关系,其散点图如图所示,回归直线l的方程为$\stackrel{∧}{y}$=ax+b则下列说法正确的是( )
| A. | a>0,b<0 | B. | a>0,b>0 | C. | a<0,b<0 | D. | a<0,b>0 |