题目内容
已知α为锐角,且tanα=
-1,函数f(x)=x2tan2α+x•sin(2α+
),数列{an}的首项a1=
, an+1=f(an).
(1)求函数f(x)的表达式;
(2)求证:an+1>an;
(3)求证:1<
+
+…+
<2 (n≥2 , n∈N*).
| 2 |
| π |
| 4 |
| 1 |
| 2 |
(1)求函数f(x)的表达式;
(2)求证:an+1>an;
(3)求证:1<
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
(1)tan2α=
=
=1,
又∵α为锐角,所以2α=
,
∴sin(2α+
)=1,
则f(x)=x2+x;
(2)∵an+1=f(an)=an2+an,
∴an+1-an=an2>0,
∴an+1>an;
(3)∵
=
=
=
-
,且a1=
,
∴
=
-
,
则
+
+…+
=
-
+
-
+…+
-
=
-
=2-
,
∵a2=(
)2+
=
,a3=(
)2+
>1,
又n≥2时,∴an+1>an,
∴an+1≥a3>1,
∴1<2-
<2,
∴1<
+
+…+
<2.
| 2tanα |
| 1-tan2α |
2(
| ||
1-(
|
又∵α为锐角,所以2α=
| π |
| 4 |
∴sin(2α+
| π |
| 4 |
则f(x)=x2+x;
(2)∵an+1=f(an)=an2+an,
∴an+1-an=an2>0,
∴an+1>an;
(3)∵
| 1 |
| an+1 |
| 1 | ||
|
| 1 |
| an(1+an) |
| 1 |
| an |
| 1 |
| 1+an |
| 1 |
| 2 |
∴
| 1 |
| 1+an |
| 1 |
| an |
| 1 |
| an+1 |
则
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
=
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| an+1 |
∵a2=(
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
又n≥2时,∴an+1>an,
∴an+1≥a3>1,
∴1<2-
| 1 |
| an+1 |
∴1<
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
练习册系列答案
相关题目