题目内容
已知:函数f(x)=x3-6x2+3x+t,t∈R.
(1)求函数f(x)两个极值点所对应的图象上两点之间的距离;
(2)设函数g(x)=exf(x)有三个不同的极值点,求t的取值范围.(注:a3-b3=(a-b)(a2+ab+b2))
(1)求函数f(x)两个极值点所对应的图象上两点之间的距离;
(2)设函数g(x)=exf(x)有三个不同的极值点,求t的取值范围.(注:a3-b3=(a-b)(a2+ab+b2))
考点:函数在某点取得极值的条件,利用导数研究函数的极值
专题:计算题,导数的概念及应用
分析:(1)令f′(x)=3x2-12x+3=0,设其两根为(x1,x2)(x1<x2),利用韦达定理可得x1+x2=4,x1x2=1,进而可求x2-x1,y1-y2,故可求函数f(x)两个极值点所对应的图象上两点之间的距离;
(2)求导函数,f′(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex,函数g(x)=exf(x)有三个不同的极值点,所以x3-3x2-9x+t+3=0有三个不等根,构造函数h(x)=x3-3x2-9x+t+3,可知h(x)在(-∞,-1),(3,+∞)上递增,在(-1,3)上递减,从而h(-1)>0,h(3)<0,故可求t的取值范围.
(2)求导函数,f′(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex,函数g(x)=exf(x)有三个不同的极值点,所以x3-3x2-9x+t+3=0有三个不等根,构造函数h(x)=x3-3x2-9x+t+3,可知h(x)在(-∞,-1),(3,+∞)上递增,在(-1,3)上递减,从而h(-1)>0,h(3)<0,故可求t的取值范围.
解答:
解:(1)令f′(x)=3x2-12x+3=0,设其两根为(x1,x2)(x1<x2)
∴x1+x2=4,x1x2=1
∴x2-x1=2
,
设两个极值点所对应的图象上两点的坐标为(x1,y1),(x2,y2)
则y1-y2=(x13-6x12+3x1+t)-(x13-6x12+3x1+t)=12
,
∴函数f(x)两个极值点所对应的图象上两点之间的距离为
=2
(2)解:f′(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex
∵g(x)有三个不同的极值点
∴x3-3x2-9x+t+3=0有三个不等根;
令h(x)=x3-3x2-9x+t+3,则h′(x)=3x2-6x-9=3(x+1)(x-3)
∴h(x)在(-∞,-1),(3,+∞)上递增,在(-1,3)上递减
∵h(x)有三个零点
∴h(-1)>0,h(3)<0
∴t+8>0,t-24<0
∴-8<t<24.
∴x1+x2=4,x1x2=1
∴x2-x1=2
| 3 |
设两个极值点所对应的图象上两点的坐标为(x1,y1),(x2,y2)
则y1-y2=(x13-6x12+3x1+t)-(x13-6x12+3x1+t)=12
| 3 |
∴函数f(x)两个极值点所对应的图象上两点之间的距离为
12+(12
|
| 111 |
(2)解:f′(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex
∵g(x)有三个不同的极值点
∴x3-3x2-9x+t+3=0有三个不等根;
令h(x)=x3-3x2-9x+t+3,则h′(x)=3x2-6x-9=3(x+1)(x-3)
∴h(x)在(-∞,-1),(3,+∞)上递增,在(-1,3)上递减
∵h(x)有三个零点
∴h(-1)>0,h(3)<0
∴t+8>0,t-24<0
∴-8<t<24.
点评:本题以函数为载体,考查导数的运用,考查利用导数求函数的单调性,考查函数的极值,解题的关键是将函数g(x)=exf(x)有三个不同的极值点,转化为x3-3x2-9x+t+3=0有三个不等根.
练习册系列答案
相关题目