题目内容

5.设$(f(x,y))=({\begin{array}{l}xy1\end{array}})({\begin{array}{l}1&0&1\\ 0&1&1\\ 1&1&{-2}\end{array}})({\begin{array}{l}x\\ y\\ 1\end{array}})$,点A(x1,y1)满足方程f(x,y)=0,点B(-1,-1).
(1)计算$|{\overrightarrow{AB}}$|; 
(2)O为坐标原点,当$\overrightarrow{AO}$⊥$\overrightarrow{BO}$时,计算$|{\overrightarrow{AO}}$|; 
(3)求$|{\overrightarrow{OA}}$|的取值范围.

分析 (1)利用定义,可得${({x_1}+1)^2}+{({y_1}+1)^2}={2^2}\end{array}$,所以A在以(-1,-1)为圆心,2为半径的圆上,即可计算$|{\overrightarrow{AB}}$|; 
(2)O为坐标原点,当$\overrightarrow{AO}$⊥$\overrightarrow{BO}$时,利用勾股定理计算$|{\overrightarrow{AO}}$|; 
(3)当$\overrightarrow{OA}$与$\overrightarrow{OB}$同向时,${\overrightarrow{OA}_{max}}=2+\sqrt{2}$,当$\overrightarrow{OA}$与$\overrightarrow{OB}$反向时,$\overrightarrow{OA}min$=2-$\sqrt{2}$,求$|{\overrightarrow{OA}}$|的取值范围.

解答 解:(1)$(f(x,y))=({\begin{array}{l}xy1\end{array}})({\begin{array}{l}1&0&1\\ 0&1&1\\ 1&1&{-2}\end{array}})({\begin{array}{l}x\\ y\\ 1\end{array}})$=(x2+y2+2x+2y-2),
∴${({x_1}+1)^2}+{({y_1}+1)^2}={2^2}\end{array}$
∴点A在以(-1,-1)为圆心,2为半径的圆上.所以$|{\overrightarrow{AB}}|=2$;$(2)∵\overrightarrow{AB}⊥\overrightarrow{BO}∴{|{\overrightarrow{AO}}|^2}={|{\overrightarrow{AB}}|^2}-{|{\overrightarrow{OB}}|^2}={2^2}-{(\sqrt{2})^2}=2∴|{\overrightarrow{AO}}|=\sqrt{2}$;
(3)当$\overrightarrow{OA}$与$\overrightarrow{OB}$同向时,${\overrightarrow{OA}_{max}}=2+\sqrt{2}$,当$\overrightarrow{OA}$与$\overrightarrow{OB}$反向时,$\overrightarrow{OA}min$=2-$\sqrt{2}$,
∴$|{\overrightarrow{AO}}|∈[{2-\sqrt{2},2+\sqrt{2}}]$.

点评 本题考查轨迹方程,考查向量知识的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网