题目内容
17.曲线y=f(x)在点(x0,f(x0)))处的切线的倾斜角是$\frac{π}{4}$,f′(x0)的值为( )| A. | $\frac{π}{4}$ | B. | -$\frac{π}{4}$ | C. | -1 | D. | 1 |
分析 运用导数的几何意义和直线的斜率公式,计算即可得到所求值.
解答 解:由题意可得切线的斜率为k=tan$\frac{π}{4}$=1,
由导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,
即有f′(x0)=1.
故选:D.
点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,考查直线的斜率公式,属于基础题.
练习册系列答案
相关题目
8.在平面直角坐际系xOy中,P是椭圆$\frac{{y}^{2}}{4}$$+\frac{{x}^{2}}{3}$=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
5.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,A,B是椭圆上的两点,且满足$\overrightarrow{OA}$$+\overrightarrow{OB}$=$\overrightarrow{0}$(O为坐标原点),$\overrightarrow{A{F}_{2}}$$•\overrightarrow{{F}_{1}{F}_{2}}$=0,若直线AB的斜率为$\frac{\sqrt{2}}{2}$,则椭圆的离心率是( )
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ |
12.下列关于语句的说法正确的是( )
| A. | 在程序中,程序执行的顺序是按照程序中语句行排列的顺序执行的 | |
| B. | 条件语句就是满足条件就执行,不满足条件就不执行 | |
| C. | 循环语句是流程图中循环结构的实现 | |
| D. | 循环结构不可以嵌套 |