ÌâÄ¿ÄÚÈÝ
2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦Á\\ y=1+sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£¬¦Á¡ÊR£©£¬ÔÚÒÔ×ø±êÔµãΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏß${C_2}£º¦Ñsin£¨¦È-\frac{¦Ð}{4}£©=\sqrt{2}$£®£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßC1ºÍÇúÏßC2ÏཻÓÚA£¬BÁ½µã£¬Çó|AB|µÄÖµ£®
·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³Ì»¥»¯·½·¨£¬ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßC1ºÍÇúÏßC2ÏཻÓÚA£¬BÁ½µã£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¼´¿ÉÇó|AB|µÄÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉ$\left\{\begin{array}{l}x=cos¦Á\\ y=1+sin¦Á\end{array}\right.⇒\left\{\begin{array}{l}x=cos¦Á\\ y-1=sin¦Á\end{array}\right.⇒{x^2}+{£¨y-1£©^2}=1$¡3·Ö
ÓÉ$¦Ñsin£¨¦È-\frac{¦Ð}{4}£©=\sqrt{2}⇒\frac{{\sqrt{2}}}{2}¦Ñsin¦È-\frac{{\sqrt{2}}}{2}¦Ñcos¦È=\sqrt{2}⇒y-x=2$
¼´C2£ºx-y+2=0£®¡6·Ö
£¨¢ò£©¡ßÖ±Ïßx-y+2=0ÓëÔ²x2+£¨y-1£©2=1ÏཻÓÚA£¬BÁ½µã£¬
ÓÖx2+£¨y-1£©2=1µÄÔ²ÐÄ£¨0£¬1£©£¬Îª°ë¾¶Îª1£¬
¹ÊÔ²Ðĵ½Ö±ÏߵľàÀë$d=\frac{|0-1+2|}{{\sqrt{{1^2}+{{£¨-1£©}^2}}}}=\frac{{\sqrt{2}}}{2}$£¬
¡à$|AB|=2\sqrt{{1^2}-{{£¨\frac{{\sqrt{2}}}{2}£©}^2}}=\sqrt{2}$£®¡10·Ö£®
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¥»¯£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | {x|-ln3£¼x£¼ln3} | B£® | {x|x£¼-ln3£¬»òx£¾ln3} | ||
| C£® | {x|-ln3£¼x£¼0£¬»òx£¾ln3} | D£® | {x|x£¼-ln3£¬»ò0£¼x£¼ln3} |
| A£® | f£¨x£©=x+sinx | B£® | f£¨x£©=$\frac{cosx}{x}$ | C£® | f£¨x£©=x£¨x-$\frac{¦Ð}{2}$£©£¨x-$\frac{3¦Ð}{2}$£© | D£® | f£¨x£©=xcosx |
| A£® | -1 | B£® | 0 | C£® | 1 | D£® | 2 |
| A£® | 1 | B£® | 2 | C£® | 4 | D£® | 8 |