ÌâÄ¿ÄÚÈÝ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦Á\\ y=1+sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£¬¦Á¡ÊR£©£¬ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏß${C_2}£º¦Ñsin£¨¦È-\frac{¦Ð}{4}£©=\sqrt{2}$£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßC1ºÍÇúÏßC2ÏཻÓÚA£¬BÁ½µã£¬Çó|AB|µÄÖµ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³Ì»¥»¯·½·¨£¬ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßC1ºÍÇúÏßC2ÏཻÓÚA£¬BÁ½µã£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¼´¿ÉÇó|AB|µÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉ$\left\{\begin{array}{l}x=cos¦Á\\ y=1+sin¦Á\end{array}\right.⇒\left\{\begin{array}{l}x=cos¦Á\\ y-1=sin¦Á\end{array}\right.⇒{x^2}+{£¨y-1£©^2}=1$¡­3·Ö
ÓÉ$¦Ñsin£¨¦È-\frac{¦Ð}{4}£©=\sqrt{2}⇒\frac{{\sqrt{2}}}{2}¦Ñsin¦È-\frac{{\sqrt{2}}}{2}¦Ñcos¦È=\sqrt{2}⇒y-x=2$
¼´C2£ºx-y+2=0£®¡­6·Ö
£¨¢ò£©¡ßÖ±Ïßx-y+2=0ÓëÔ²x2+£¨y-1£©2=1ÏཻÓÚA£¬BÁ½µã£¬
ÓÖx2+£¨y-1£©2=1µÄÔ²ÐÄ£¨0£¬1£©£¬Îª°ë¾¶Îª1£¬
¹ÊÔ²Ðĵ½Ö±ÏߵľàÀë$d=\frac{|0-1+2|}{{\sqrt{{1^2}+{{£¨-1£©}^2}}}}=\frac{{\sqrt{2}}}{2}$£¬
¡à$|AB|=2\sqrt{{1^2}-{{£¨\frac{{\sqrt{2}}}{2}£©}^2}}=\sqrt{2}$£®¡­10·Ö£®

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¥»¯£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø