ÌâÄ¿ÄÚÈÝ
¶ÔÓÚÊý¶ÔÐòÁÐP£º£¨a1£¬b1£©£¬£¨a2£¬b2£©£¬¡£¬£¨an£¬bn£©£¬¼ÇT1£¨P£©=a1+b1£¬Tk£¨P£©=bk+max{Tk-1£¨P£©£¬a1+a2+¡+ak}£¨2¡Ük¡Ün£©£¬ÆäÖÐmax{Tk-1£¨P£©£¬a1+a2+¡+ak}±íʾTk-1£¨P£©ºÍa1+a2+¡+akÁ½¸öÊýÖÐ×î´óµÄÊý£¬
£¨¢ñ£©¶ÔÓÚÊý¶ÔÐòÁÐP£º£¨2£¬5£©£¬£¨4£¬1£©£¬ÇóT1£¨P£©£¬T2£¨P£©µÄÖµ£»
£¨¢ò£©¼ÇmΪa£¬b£¬c£¬dËĸöÊýÖÐ×îСµÄÊý£¬¶ÔÓÚÓÉÁ½¸öÊý¶Ô£¨a£¬b£©£¬£¨c£¬d£©×é³ÉµÄÊý¶ÔÐòÁÐP£º£¨a£¬b£©£¬£¨c£¬d£©ºÍP¡ä£º£¨c£¬d£©£¬£¨a£¬b£©£¬ÊÔ·Ö±ð¶Ôm=aºÍm=dÁ½ÖÖÇé¿ö±È½ÏT2£¨P£©ºÍT2£¨P¡ä£©µÄ´óС£»
£¨¢ó£©ÔÚÓÉÎå¸öÊý¶Ô£¨11£¬8£©£¬£¨5£¬2£©£¬£¨16£¬11£©£¬£¨11£¬11£©£¬£¨4£¬6£©×é³ÉµÄËùÓÐÊý¶ÔÐòÁÐÖУ¬Ð´³öÒ»¸öÊý¶ÔÐòÁÐPʹT5£¨P£©×îС£¬²¢Ð´³öT5£¨P£©µÄÖµ£¨Ö»Ðèд³ö½áÂÛ£©£®
£¨¢ñ£©¶ÔÓÚÊý¶ÔÐòÁÐP£º£¨2£¬5£©£¬£¨4£¬1£©£¬ÇóT1£¨P£©£¬T2£¨P£©µÄÖµ£»
£¨¢ò£©¼ÇmΪa£¬b£¬c£¬dËĸöÊýÖÐ×îСµÄÊý£¬¶ÔÓÚÓÉÁ½¸öÊý¶Ô£¨a£¬b£©£¬£¨c£¬d£©×é³ÉµÄÊý¶ÔÐòÁÐP£º£¨a£¬b£©£¬£¨c£¬d£©ºÍP¡ä£º£¨c£¬d£©£¬£¨a£¬b£©£¬ÊÔ·Ö±ð¶Ôm=aºÍm=dÁ½ÖÖÇé¿ö±È½ÏT2£¨P£©ºÍT2£¨P¡ä£©µÄ´óС£»
£¨¢ó£©ÔÚÓÉÎå¸öÊý¶Ô£¨11£¬8£©£¬£¨5£¬2£©£¬£¨16£¬11£©£¬£¨11£¬11£©£¬£¨4£¬6£©×é³ÉµÄËùÓÐÊý¶ÔÐòÁÐÖУ¬Ð´³öÒ»¸öÊý¶ÔÐòÁÐPʹT5£¨P£©×îС£¬²¢Ð´³öT5£¨P£©µÄÖµ£¨Ö»Ðèд³ö½áÂÛ£©£®
¿¼µã£º·ÖÎö·¨ºÍ×ۺϷ¨
רÌ⣺ж¨Òå,·ÖÎö·¨
·ÖÎö£º£¨¢ñ£©ÀûÓÃT1£¨P£©=a1+b1£¬Tk£¨P£©=bk+max{Tk-1£¨P£©£¬a1+a2+¡+ak}£¨2¡Ük¡Ün£©£¬¿ÉÇóT1£¨P£©£¬T2£¨P£©µÄÖµ£»
£¨¢ò£©T2£¨P£©=max{a+b+d£¬a+c+d}£¬T2£¨P¡ä£©=max{c+d+b£¬c+a+b}£¬·ÖÀàÌÖÂÛ£¬ÀûÓÃж¨Ò壬¿É±È½ÏT2£¨P£©ºÍT2£¨P¡ä£©µÄ´óС£»
£¨¢ó£©¸ù¾Ýж¨Ò壬¿ÉµÃ½áÂÛ£®
£¨¢ò£©T2£¨P£©=max{a+b+d£¬a+c+d}£¬T2£¨P¡ä£©=max{c+d+b£¬c+a+b}£¬·ÖÀàÌÖÂÛ£¬ÀûÓÃж¨Ò壬¿É±È½ÏT2£¨P£©ºÍT2£¨P¡ä£©µÄ´óС£»
£¨¢ó£©¸ù¾Ýж¨Ò壬¿ÉµÃ½áÂÛ£®
½â´ð£º
½â£º£¨¢ñ£©T1£¨P£©=2+5=7£¬T2£¨P£©=1+max{T1£¨P£©£¬2+4}=1+max{7£¬6}=8£»
£¨¢ò£©T2£¨P£©=max{a+b+d£¬a+c+d}£¬T2£¨P¡ä£©=max{c+d+b£¬c+a+b}£®
µ±m=aʱ£¬T2£¨P¡ä£©=max{c+d+b£¬c+a+b}=c+d+b£¬
¡ßa+b+d¡Üc+d+b£¬ÇÒa+c+d¡Üc+b+d£¬¡àT2£¨P£©¡ÜT2£¨P¡ä£©£»
µ±m=dʱ£¬T2£¨P¡ä£©=max{c+d+b£¬c+a+b}=c+a+b£¬
¡ßa+b+d¡Üc+a+b£¬ÇÒa+c+d¡Üc+a+d£¬¡àT2£¨P£©¡ÜT2£¨P¡ä£©£»
¡àÎÞÂÛm=aºÍm=d£¬T2£¨P£©¡ÜT2£¨P¡ä£©£»
£¨¢ó£©Êý¶Ô£¨4£¬6£©£¬£¨11£¬11£©£¬£¨16£¬11£©£¬£¨11£¬8£©£¬£¨5£¬2£©£¬T5£¨P£©×îС£»
T1£¨P£©=10£¬T2£¨P£©=26£»T3£¨P£©42£¬T4£¨P£©=50£¬T5£¨P£©=52£®
£¨¢ò£©T2£¨P£©=max{a+b+d£¬a+c+d}£¬T2£¨P¡ä£©=max{c+d+b£¬c+a+b}£®
µ±m=aʱ£¬T2£¨P¡ä£©=max{c+d+b£¬c+a+b}=c+d+b£¬
¡ßa+b+d¡Üc+d+b£¬ÇÒa+c+d¡Üc+b+d£¬¡àT2£¨P£©¡ÜT2£¨P¡ä£©£»
µ±m=dʱ£¬T2£¨P¡ä£©=max{c+d+b£¬c+a+b}=c+a+b£¬
¡ßa+b+d¡Üc+a+b£¬ÇÒa+c+d¡Üc+a+d£¬¡àT2£¨P£©¡ÜT2£¨P¡ä£©£»
¡àÎÞÂÛm=aºÍm=d£¬T2£¨P£©¡ÜT2£¨P¡ä£©£»
£¨¢ó£©Êý¶Ô£¨4£¬6£©£¬£¨11£¬11£©£¬£¨16£¬11£©£¬£¨11£¬8£©£¬£¨5£¬2£©£¬T5£¨P£©×îС£»
T1£¨P£©=10£¬T2£¨P£©=26£»T3£¨P£©42£¬T4£¨P£©=50£¬T5£¨P£©=52£®
µãÆÀ£º±¾Ì⿼²éж¨Ò壬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÕýÈ·Àí½âÓëÔËÓÃж¨ÒåÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖª¼×ºÐÖнöÓÐ1¸öÇòÇÒΪºìÇò£¬ÒÒºÐÖÐÓÐm¸öºìÇòºÍn¸öÀ¶Çò£¨m¡Ý3£¬n¡Ý3£©£¬´ÓÒÒºÐÖÐËæ»ú³éÈ¡i£¨i=1£¬2£©¸öÇò·ÅÈë¼×ºÐÖУ®
£¨a£©·ÅÈëi¸öÇòºó£¬¼×ºÐÖк¬ÓкìÇòµÄ¸öÊý¼ÇΪ¦Îi£¨i=1£¬2£©£»
£¨b£©·ÅÈëi¸öÇòºó£¬´Ó¼×ºÐÖÐÈ¡1¸öÇòÊǺìÇòµÄ¸ÅÂʼÇΪpi£¨i=1£¬2£©£®
Ôò£¨¡¡¡¡£©
£¨a£©·ÅÈëi¸öÇòºó£¬¼×ºÐÖк¬ÓкìÇòµÄ¸öÊý¼ÇΪ¦Îi£¨i=1£¬2£©£»
£¨b£©·ÅÈëi¸öÇòºó£¬´Ó¼×ºÐÖÐÈ¡1¸öÇòÊǺìÇòµÄ¸ÅÂʼÇΪpi£¨i=1£¬2£©£®
Ôò£¨¡¡¡¡£©
| A¡¢p1£¾p2£¬E£¨¦Î1£©£¼E£¨¦Î2£© |
| B¡¢p1£¼p2£¬E£¨¦Î1£©£¾E£¨¦Î2£© |
| C¡¢p1£¾p2£¬E£¨¦Î1£©£¾E£¨¦Î2£© |
| D¡¢p1£¼p2£¬E£¨¦Î1£©£¼E£¨¦Î2£© |