题目内容
20.已知x,y满足$\left\{\begin{array}{l}y≤-|x|+2\\ x+2y+2≥0\end{array}\right.$,则z=x-2y的最大值为14.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}y≤-|x|+2\\ x+2y+2≥0\end{array}\right.$作出可行域如图,![]()
化目标函数z=x-2y为$y=\frac{x}{2}-\frac{z}{2}$,
由图可知,当直线$y=\frac{x}{2}-\frac{z}{2}$过点A(6,-4)时,直线在y轴上的截距最小,z有最大值为14.
故答案为:14.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
11.已知圆O:x2+y2=4(O为坐标原点)经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点和两个焦点,则椭圆C的标准方程为( )
| A. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1 |
8.已知集合A={x|x2-3x+2≤0},B={x|2x-3>0},则A∩B=( )
| A. | $(1,\frac{3}{2})$ | B. | $[1,\frac{3}{2})$ | C. | $(\frac{3}{2},2]$ | D. | $[\frac{3}{2},2)$ |
15.已知集合U=R,A={x|(x-2)(x+1)≤0},B={x|0≤x<3},则∁U(A∪B)=( )
| A. | (-1,3) | B. | (-∞,-1]∪[3,+∞) | C. | [-1,3] | D. | (-∞,-1)∪[3,+∞) |
5.关于x的方程xlnx-kx+1=0在区间[$\frac{1}{e}$,e]上有两个不等实根,则实数k的取值范围是( )
| A. | (1,1+$\frac{1}{e}$] | B. | (1,e-1] | C. | [1+$\frac{1}{e}$,e-1] | D. | (1,+∞) |
9.设变量x,y满足不等式组$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则x2+y2的最小值是( )
| A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{9}{2}$ | C. | $\sqrt{5}$ | D. | 5 |
10.已知a,b,c满足c<a<b,且ac<0,那么下列各式中一定成立( )
| A. | ac(a-c)>0 | B. | c(b-a)<0 | C. | cb2<ab2 | D. | ab>ac |