题目内容
10.在△ABC中,角A,B,C所对的边分别为a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.(1)求角A的大小;
(2)若$a=2\sqrt{3}$,求b+c的最大值.
分析 (1)由已知利用三角函数恒等变换的应用化简可得2cos2A+3cosA-2=0,可得cosA=$\frac{1}{2}$,进而可求A的值.
(2)由已知及余弦定理可求得$bc=\frac{{{{({b+c})}^2}-12}}{3}$,利用基本不等式即可求得b+c的最大值.
解答 (本题满分为14分)
解:(1)由3cosBcosC+1=3sinBsinC+cos2A,
得3(cosBcosC-sinBsinC)=cos2A-1,
即3cos(B+C)=2cos2A-2,即2cos2A+3cosA-2=0…(3分)
可得:(2cosA-1)(cosA+2)=0,
可得:cosA=$\frac{1}{2}$或cosA=-2(舍去),
可得:A=$\frac{π}{3}$…6分
(2)由$A=\frac{π}{3},a=2\sqrt{3}$及b2+c2-2bccosA=a2得b2+c2-bc=12,…(9分)
从而(b+c)2-3bc=12,即$bc=\frac{{{{({b+c})}^2}-12}}{3}$,…(11分)
又因$bc≤\frac{{{{({b+c})}^2}}}{4}$,所以$\frac{{{{({b+c})}^2}-12}}{3}≤\frac{{{{({b+c})}^2}}}{4}$即(b+c)2≤48,
所以$b+c≤4\sqrt{3}$,当且仅当$b=c=2\sqrt{3}$时取到最大值$4\sqrt{3}$.…(14分)
点评 本题主要考查了三角函数恒等变换的应用,余弦定理,基本不等式在解三角形中的综合应用,考查了转化思想,属于中档题.
练习册系列答案
相关题目
1.函数$f(x)=\left\{\begin{array}{l}{x^2}+1,x≥0\\ 1,{\;}^{\;}{\;}^{\;}x<0\end{array}\right.$的值域为[1,+∞).
18.已知集合A={x||x-1|<2},B={x|log2x<3},则A∩B=( )
| A. | (-1,3) | B. | (0,3) | C. | (0,8) | D. | (-1,8) |
15.函数$y=\sqrt{{{log}_{\frac{1}{2}}}(x-1)}$的定义域是( )
| A. | (1,+∞) | B. | (1,2] | C. | (2,+∞) | D. | (-∞,2) |
19.已知函数$f(x)={({\frac{1}{2}})^x}-1-{log_2}x$,若x0是方程f(x)=0的根,则x0∈( )
| A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | $({1,\frac{3}{2}})$ | D. | $({\frac{3}{2},2})$ |