题目内容
已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.
已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示.
(1)若该四棱锥的左视图为直角三角形,则它的体积为__________;
(2)关于该四棱锥的下列结论中:
① 四棱锥中至少有两组侧面互相垂直;
② 四棱锥的侧面中可能存在三个直角三角形;
③ 四棱锥中不可能存在四组互相垂直的侧面.
所有正确结论的序号是___________.
已知:,:,则是的
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
已知椭圆的右焦点,长轴的左、右端点分别为,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)过焦点斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交于点. 试问椭圆上是否存在点使得四边形为菱形?若存在,试求点到轴的距离;若不存在,请说明理由.
若曲线为焦点在轴上的椭圆,则实数,满足( )
(A)
(B)
(C)
(D)
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示.
(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求的值;
(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为,求随机变量的分布列和数学期望.
给定函数:①;②;③;④,其中奇函数是
(A)①
(B)②
(C)③
(D)④
已知集合是正整数的一个排列,函数
对于,定义:,,称为的满意指数.排列为排列的生成列.
(Ⅰ)当时,写出排列的生成列;
(Ⅱ)证明:若和为中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于中的排列,进行如下操作:将排列从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:新的排列的各项满意指数之和比原排列的各项满意指数之和至少增加.
已知曲线:,曲线:.曲线的左顶点恰为曲线的左焦点.
(Ⅰ)求的值;
(Ⅱ)设为曲线上一点,过点作直线交曲线于两点. 直线交曲线于两点. 若为中点,
① 求证:直线的方程为 ;
② 求四边形的面积.