题目内容
(本小题满分10分)
如图,已知圆是的外接圆,,是边上的高,是圆的直径.过点作圆的切线交的延长线于点.
(1)求证:;
(2)若,,求的长.
已知命题:“存在,使得”,则下列说法正确的是( )
A.是假命题;:“任意,都有”
B.是真命题;:“不存在,使得”
C.是真命题;:“任意,都有”
D.是假命题;:“任意,都有”
函数的图象大致是( )
(本题满分18分,第1小题满分4分,第2小题满分6分,第3小 题满分8分. )
已知数列{}满足:,为数列的前项和。
若{}是递增数列,且成等差数列,求的值;
若,且{}是递增数列,{}是递减数列,求数列{}的通项公式;
若,对于给定的正整数,是否存在一个满足条件的数列,使得,如果存在,给出一个满足条件的数列,如果不存在,请说明理由。
(本小题满分12分)
已知函数,.设时取到最大值.
(1)求的最大值及的值;
(2)在中,角,,所对的边分别为,,,,且,求的值.
已知椭圆的两个焦点分别为、,短轴的两个端点分别为.
(Ⅰ)若为等边三角形,求椭圆的方程;
(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,
求直线的方程.
给出平面区域如图所示,其中若使目标函数仅在点处取得最大值,则的取值范围是 .
已知平面三角形和空间四面体有很多相似的性质,请你类比三角形的面积公式(其中、、是三角形的三条边,是三角形内切圆的半径),写出一个关于四面体的与之类似的结论________________________.
已知集合,,则( )
A. B. C. D.