ÌâÄ¿ÄÚÈÝ
Ëæ»ú±äÁ¿XµÄ·Ö²¼ÁÐÈçϱíÈçʾ£¬ÈôÊýÁÐ{pn}ÊÇÒÔp1ΪÊ×ÏÒÔqΪ¹«±ÈµÄµÈ±ÈÊýÁУ¬Ôò³ÆËæ»ú±äÁ¿X·þ´ÓµÈ±È·Ö²¼£¬¼ÇΪQ£¨p1£¬q£©£®ÏÖËæ»ú±äÁ¿X¡«Q£¨
£¬2£©£®
£¨¢ñ£©ÇónµÄÖµ²¢ÇóËæ»ú±äÁ¿XµÄÊýѧÆÚÍûEX£»
£¨¢ò£©¼×ÒÒÁ½È˾ÙÐÐÆ¹ÅÒÇò±ÈÈü£¬ÒÑÖª¼×Ó®µÃÿһ¾Ö±ÈÈüµÄ¸ÅÂʶ¼µÈÓÚP£¨X¡Ü2£©£¬±ÈÈü²ÉÓÃÈý¾ÖÁ½Ê¤ÖÆ£¨¼´ÔÚÈý¾Ö±ÈÈüÖУ¬Ö»ÒªÓÐÒ»·½Ó®µÃÁ½¾Ö±ÈÈü£¬¾ÍÈ¡µÃʤÀû£¬±ÈÈüÒ²¾ÍËæÖ®½áÊøÁË£©£¬Çó¼×ÔÚ±ÈÈüÖÐÓ®µÄ¾ÖÊý±ÈÊäµÄ¾ÖÊý¶àµÄ¸ÅÂÊ£®
| 1 |
| 15 |
| X | 1 | 2 | ¡ | n |
| P | p1 | p2 | ¡ | pn |
£¨¢ò£©¼×ÒÒÁ½È˾ÙÐÐÆ¹ÅÒÇò±ÈÈü£¬ÒÑÖª¼×Ó®µÃÿһ¾Ö±ÈÈüµÄ¸ÅÂʶ¼µÈÓÚP£¨X¡Ü2£©£¬±ÈÈü²ÉÓÃÈý¾ÖÁ½Ê¤ÖÆ£¨¼´ÔÚÈý¾Ö±ÈÈüÖУ¬Ö»ÒªÓÐÒ»·½Ó®µÃÁ½¾Ö±ÈÈü£¬¾ÍÈ¡µÃʤÀû£¬±ÈÈüÒ²¾ÍËæÖ®½áÊøÁË£©£¬Çó¼×ÔÚ±ÈÈüÖÐÓ®µÄ¾ÖÊý±ÈÊäµÄ¾ÖÊý¶àµÄ¸ÅÂÊ£®
¿¼µã£º»¥³âʼþµÄ¸ÅÂʼӷ¨¹«Ê½,Ï໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʳ˷¨¹«Ê½
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨¢ñ£©ÒÀÌâÒâµÃ£¬ÊýÁÐ{pn}ÊÇÒÔ
ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬Óɴ˽âµÃn=4£¬ÓÉ´ËÄÜÇó³öEX£®
£¨¢ò£©Éè¡°¼×ÔÚµÚi£¨i=1£¬2£¬3£©¾Öȡʤ¡±ÎªÊ¼þAi£¬ÒÀÌâÒ⣬P(Ai)=P(X¡Ü2)=
+
=
¡£¨9·Ö£©Éè¡°¼×ÔÚ±ÈÈüÖÐÓ®µÄ¾ÖÊý±ÈÊäµÄ¾ÖÊý¶à¡±ÎªÊ¼þA£¬ÔòʼþAµÈ¼ÛÓÚA1A2+
A2A3+A1
A3£¬ÓÉ´ËÄÜÇó³ö¼×ÔÚ±ÈÈüÖÐÓ®µÄ¾ÖÊý±ÈÊäµÄ¾ÖÊý¶àµÄ¸ÅÂÊ£®
| 1 |
| 15 |
£¨¢ò£©Éè¡°¼×ÔÚµÚi£¨i=1£¬2£¬3£©¾Öȡʤ¡±ÎªÊ¼þAi£¬ÒÀÌâÒ⣬P(Ai)=P(X¡Ü2)=
| 1 |
| 15 |
| 2 |
| 15 |
| 1 |
| 5 |
. |
| A1 |
. |
| A2 |
½â´ð£º
½â£º£¨¢ñ£©ÒÀÌâÒâµÃ£¬
ÊýÁÐ{pn}ÊÇÒÔ
ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬¡£¨1·Ö£©
ËùÒÔSn=p1+p2+¡+pn=
=1 ¡£¨3·Ö£©
½âµÃn=4£®¡£¨5·Ö£©
EX=p1+2p2+3p3+4p4=1¡Á
+2¡Á
+3¡Á
+4¡Á
=
(1¡Á20+2¡Á21+3¡Á22+4¡Á23)¡£¨6·Ö£©
=
£®¡£¨7·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ£º
Éè¡°¼×ÔÚµÚi£¨i=1£¬2£¬3£©¾Öȡʤ¡±ÎªÊ¼þAi£¬
ÒÀÌâÒ⣬P(Ai)=P(X¡Ü2)=
+
=
¡£¨9·Ö£©
Éè¡°¼×ÔÚ±ÈÈüÖÐÓ®µÄ¾ÖÊý±ÈÊäµÄ¾ÖÊý¶à¡±ÎªÊ¼þA£¬
ÔòʼþAµÈ¼ÛÓÚA1A2+
A2A3+A1
A3£¬¡£¨11·Ö£©
ÔòP(A)=P(A1A2)+P(
A2A3)+P(A1
A3)=
¡Á
+
¡Á
¡Á
+
¡Á
¡Á
=
£®¡£¨13·Ö£©
ÊýÁÐ{pn}ÊÇÒÔ
| 1 |
| 15 |
ËùÒÔSn=p1+p2+¡+pn=
| ||
| 1-2 |
½âµÃn=4£®¡£¨5·Ö£©
EX=p1+2p2+3p3+4p4=1¡Á
| 1 |
| 15 |
| 2 |
| 15 |
| 22 |
| 15 |
| 23 |
| 15 |
=
| 1 |
| 15 |
=
| 49 |
| 15 |
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ£º
| X | 1 | 2 | 3 | 4 | ||||||||
| P |
|
|
|
|
ÒÀÌâÒ⣬P(Ai)=P(X¡Ü2)=
| 1 |
| 15 |
| 2 |
| 15 |
| 1 |
| 5 |
Éè¡°¼×ÔÚ±ÈÈüÖÐÓ®µÄ¾ÖÊý±ÈÊäµÄ¾ÖÊý¶à¡±ÎªÊ¼þA£¬
ÔòʼþAµÈ¼ÛÓÚA1A2+
. |
| A1 |
. |
| A2 |
ÔòP(A)=P(A1A2)+P(
. |
| A1 |
. |
| A2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
| 13 |
| 125 |
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÊýѧÆÚÍûµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÈçͼÊÇÒ»¸ö¼¸ºÎÌåµÄÈýÊÓͼ£¬ÔòÕâ¸ö¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©

| A¡¢26 | ||
B¡¢
| ||
| C¡¢27 | ||
D¡¢
|
ÒÑÖªµ¥Î»ÏòÁ¿
£¬
µÄ¼Ð½ÇΪ
£¬Ôò|
-4
|µÈÓÚ£¨¡¡¡¡£©
| a |
| b |
| ¦Ð |
| 3 |
| a |
| b |
| A¡¢13 | ||
| B¡¢11 | ||
C¡¢
| ||
D¡¢
|
Èô¸´ÊýZ=1+i£¬i ΪÐéÊýµ¥Î»£¬Ôò£¨1+Z£©Z=£¨¡¡¡¡£©
| A¡¢1+3 i |
| B¡¢3+3 i |
| C¡¢3-3 i |
| D¡¢3 |