题目内容

如图,正方体ABCD-A1B1C1D1中,M∈AA1,N∈AB,∠C1MN=90°,B1N=2MN,则∠MNB1=
 

考点:空间向量的夹角与距离求解公式
专题:空间角
分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出∠MNB1的大小.
解答: 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设M(1,0,b),N(1,a,0),A(1,0,0),B(1,1,0),
B1(1,1,1),C1(0,1,1),
C1M
=(1,-1,b-1),
MN
=(0,a,-b),
B1N
=(0,a-1,-1),
∵∠C1MN=90°,B1N=2MN,
C1M
MN
=-a+b(1-b)=0,∴a=b(1-b),
∴cos∠MNB1=
NM
NB1
|
NM
|•|
NB1
|
=
a2-a+b
2(a2+b2)

=
b2(1-b2)+b2
2[b2(1-b2)+b2]
=
1
2

∴∠MNB1=60°.
故答案为:60°.
点评:本题考查空间角的求法,是中档题,解题时要认真审题,注意空间思维能力和向量法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网