题目内容
等差数列{an},{bn},{cn}与{dn}的前n项和分别记为Sn,Tn,Pn,Qn.
=
,f(n)=
;
=
,g(n)=
.则
的最小值= .
| Sn |
| Tn |
| 5n+1 |
| 3n-1 |
| an |
| bn |
| cn |
| dn |
| 5n-2 |
| 3n-2 |
| Pn |
| Qn |
| f(n) |
| g(n) |
考点:等差数列的性质
专题:等差数列与等比数列
分析:由等差数列的性质分别求出f(n)与g(n),作比后利用导数求最值.
解答:
解:∵等差数列{an},{bn},{cn}与{dn}的前n项和分别记为Sn,Tn,Pn,Qn.
且
=
,f(n)=
;
=
,g(n)=
.
∴f(n)=
=
=
=
.
g(n)=
=
=
=
.
∴h(n)=
=
=
=1-
.
令t(n)=
,
∵t′(n)=
<0,
∴当n=1时,t(n)max=
.
∴
的最小值为1-
=
.
故答案为:
.
且
| Sn |
| Tn |
| 5n+1 |
| 3n-1 |
| an |
| bn |
| cn |
| dn |
| 5n-2 |
| 3n-2 |
| Pn |
| Qn |
∴f(n)=
| an |
| bn |
| S2n-1 |
| T2n-1 |
| 5(2n-1)+1 |
| 3(2n-1)-1 |
| 5n-2 |
| 3n-2 |
g(n)=
| Pn |
| Qn |
c
| ||
d
|
5•
| ||
3•
|
| 5n+1 |
| 3n-1 |
∴h(n)=
| f(n) |
| g(n) |
| ||
|
| 15n2-11n+2 |
| 15n2-7n-2 |
| 4n+1 |
| 15n2-7n-2 |
令t(n)=
| 4n+1 |
| 15n2-7n-2 |
∵t′(n)=
| -60n2-30n-1 |
| (15n2-7n-2)2 |
∴当n=1时,t(n)max=
| 5 |
| 7 |
∴
| f(n) |
| g(n) |
| 5 |
| 7 |
| 2 |
| 7 |
故答案为:
| 2 |
| 7 |
点评:本题考查了等差数列的性质,训练了利用导数求函数的最值,是中档题.
练习册系列答案
相关题目