题目内容

18.已知幂函数f(x)=xα的图象过点$(2,\frac{1}{2})$,则函数g(x)=(x-2)f(x)在区间$[{\frac{1}{2},1}]$上的最小值是(  )
A.-1B.-2C.-3D.-4

分析 求出幂函数f(x)的解析式,从而求出g(x)的解析式,根据函数的单调性求出g(x)在闭区间上的最小值即可.

解答 解:∵幂函数f(x)=xα的图象过点$(2,\frac{1}{2})$,
∴2α=$\frac{1}{2}$,解得:α=-1,
故g(x)=$\frac{x-2}{x}$=1-$\frac{2}{x}$,
而g(x)在[$\frac{1}{2}$,1]递增,
故g(x)min=g($\frac{1}{2}$)=-3,
故选:C.

点评 本题考查了幂函数的定义,考查函数的单调性、最值问题,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网