题目内容

9.已知等差数列{an}的前n项和为Sn,a2=-2,S4=-4,若Sn取得最小值,则n的值为(  )
A.n=2B.n=3C.n=2或n=3D.n=4

分析 利用等差数列的通项公式与求和公式可得an,令an≤0,解得n即可得出.

解答 解:设等差数列{an}的公差为d,∵a2=-2,S4=-4,
∴a1+d=-2,4a1+$\frac{4×3}{2}$d=-4,
解得a1=-4,d=2.
∴an=-4+2(n-1)=2n-6,
令an≤0,解得n≤3.
∴若Sn取得最小值,则n=2或3.
故选:C.

点评 本题考查了等差数列的性质与求和公式、单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网