题目内容
(1)化简:
(2)已知tanθ+sinθ=a,tanθ-sinθ=b,求证:(a2-b2)2=16ab.
sin(2π-α)cos(π+α)cos(
| ||||
cos(π-α)sin(3π-α)sin(-π-α)sin(
|
(2)已知tanθ+sinθ=a,tanθ-sinθ=b,求证:(a2-b2)2=16ab.
考点:三角函数中的恒等变换应用,运用诱导公式化简求值
专题:三角函数的求值
分析:(1)利用三角函数的诱导公式化简即可.
(2)首先将等式的左边化简为左边=[(a+b)(a-b)]2=16tan2θsin2θ,然后将右边化简为右边=16(tanθ+sinθ)(tanθ-sinθ)=16tan2θsin2θ.从而证明原式成立.
(2)首先将等式的左边化简为左边=[(a+b)(a-b)]2=16tan2θsin2θ,然后将右边化简为右边=16(tanθ+sinθ)(tanθ-sinθ)=16tan2θsin2θ.从而证明原式成立.
解答:
解:(1)
=
=-tanα
(2)证明:左边=(a2-b2)2
=[(a+b)(a-b)]2
=[(tanθ+sinθ+tanθ-sinθ)(tanθ+sinθ-tanθ+sinθ)]2
=16tan2θsin2θ
右边=16ab
=16(tanθ+sinθ)(tanθ-sinθ)
=16(tan2θ-sin2θ)
=16(
-sin2θ)
=16•
=16tan2θsin2θ
左边=右边
∴(a2-b2)2=16ab
sin(2π-α)cos(π+α)cos(
| ||||
cos(π-α)sin(3π-α)sin(-π-α)sin(
|
=
| (-sinα)(-cosα)(-sinα)(-sinα) |
| (-cosα)sinαsinαcosα |
(2)证明:左边=(a2-b2)2
=[(a+b)(a-b)]2
=[(tanθ+sinθ+tanθ-sinθ)(tanθ+sinθ-tanθ+sinθ)]2
=16tan2θsin2θ
右边=16ab
=16(tanθ+sinθ)(tanθ-sinθ)
=16(tan2θ-sin2θ)
=16(
| sin2θ |
| cos2θ |
=16•
| sin2θ(1-cos2θ) |
| cos2θ |
=16tan2θsin2θ
左边=右边
∴(a2-b2)2=16ab
点评:本题考查三角函数诱导公式,三角函数的恒等变换等知识,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=x2+(b-
)x+a+b是偶函数,则此函数的图象与y轴交点的纵坐标的最大值为( )
| 2-a2 |
A、
| ||
| B、2 | ||
| C、4 | ||
| D、-2 |