ÌâÄ¿ÄÚÈÝ
8£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÔÚÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$¦È+\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®£¨¢ñ£©ÇóÇúÏßCºÍÖ±ÏßlÔÚ¸ÃÖ±½Ç×ø±êϵÏÂµÄÆÕͨ·½³Ì£»
£¨¢ò£©¶¯µãAÔÚÇúÏßCÉÏ£¬¶¯µãBÔÚÖ±ÏßlÉÏ£¬¶¨µãPµÄ×ø±êΪ£¨-2£¬2£©£¬Çó|PB|+|AB|µÄ×îСֵ£®
·ÖÎö £¨¢ñ£©ÓÉÇúÏßCµÄ²ÎÊý·½³ÌÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬ÓÉÖ±ÏßlµÄ¼«×ø±ê·½³ÌÄÜÇó³öÖ±ÏßlÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©¼°Ãñ£¬Ïó£¬P£¨-2£¬2£©£¬ÀûÓÃÁ½µãÒâ¾àÀ빫ʽÄÜÇó³ö|PB|+|AB|È¡×îСֵ£®
½â´ð
½â£º£¨¢ñ£©¡ßÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+y2=1£®
¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$¦È+\frac{¦Ð}{4}$£©=2$\sqrt{2}$£¬
¡à$¦Ñsin¦Ècos\frac{¦Ð}{4}+¦Ñcos¦Èsin\frac{¦Ð}{4}$=2$\sqrt{2}$£¬
¦Ñsin¦È+¦Ñcos¦È=4£¬
¡àÖ±ÏßlÖ±½Ç×ø±ê·½³ÌΪx+y-4=0£®
£¨¢ò£©Èçͼ£¬P¹ØÓÚy=-x+4¶Ô³ÆµãP¡ä£¨x£¬y£©£¬
|P¡äC|-r=P¡äA=P¡äA=|P¡äB|=P¡äB|+|A¡äB|£¬
´ËʱP¡äBA¹²³É¹²Ïߣ¬|PB|+|AB|È¡×îСֵ£¬
ÓÖ$\frac{y+2}{2}=-\frac{x-2}{2}+4$£¬½âµÃx=2£¬y=6£¬
¡à|PA¡ä|=$\sqrt{36+1}$-1=$\frac{y-2}{x+2}=1$£¬
¡à$\sqrt{37}-1$£®
¡à|PB|+|AB|µÄ×îСֵÊÇ$\sqrt{37}-1$£®£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶κ͵Ä×îСֵµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪעÒâÁ½µã¼ä¾àÀ빫ʽµÄºÏÀíÔËÓã®
| A£® | 30¡ã | B£® | 45¡ã | C£® | 60¡ã | D£® | 90¡ã |
| A£® | $\frac{7}{8}$ | B£® | $\frac{9}{10}$ | C£® | $\frac{8}{9}$ | D£® | $\frac{10}{11}$ |
| A£® | £¨0£¬1£© | B£® | £¨1£¬2£© | C£® | £¨2£¬3£© | D£® | £¨3£¬4£© |