题目内容
已知函数f(x)=cos2x-
sin2x,x∈R.
(1)求函数f(x)的单调递减区间;
(2)设θ∈(
,
),且f(θ)=-
,求cos2θ.
| 3 |
(1)求函数f(x)的单调递减区间;
(2)设θ∈(
| π |
| 3 |
| 7π |
| 12 |
| 4 |
| 3 |
考点:两角和与差的正弦函数,二倍角的余弦
专题:三角函数的求值
分析:(1)由和差角公式化简可得f(x)=2cos(2x+
),整体法令2kπ≤2x+
≤2kπ+π,解不等式可得;(2)可得cos(2θ+
)=-
,进而可得sin(2θ+
),而cos2θ=cos[(2θ+
)-
]=
cos(2θ+
)+
sin(2θ+
),代入计算可得.
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 2 |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
解答:
解:(1)∵f(x)=cos2x-
sin2x
=2(
cos2x-
sin2x)
=2cos(2x+
),
令2kπ≤2x+
≤2kπ+π,
解得kπ-
≤x≤kπ+
,k∈Z,
∴函数f(x)的单调递减区间为[kπ-
,kπ+
],k∈Z;
(2)由(1)可得f(θ)=2cos(2θ+
)=-
,
解得cos(2θ+
)=-
,
∵θ∈(
,
),∴2θ+
∈(π,
),
∴sin(2θ+
)=-
=-
,
∴cos2θ=cos[(2θ+
)-
]=
cos(2θ+
)+
sin(2θ+
)
=
×(-
)+
×(-
)=-
| 3 |
=2(
| 1 |
| 2 |
| ||
| 2 |
=2cos(2x+
| π |
| 3 |
令2kπ≤2x+
| π |
| 3 |
解得kπ-
| π |
| 6 |
| 2π |
| 3 |
∴函数f(x)的单调递减区间为[kπ-
| π |
| 6 |
| 2π |
| 3 |
(2)由(1)可得f(θ)=2cos(2θ+
| π |
| 3 |
| 4 |
| 3 |
解得cos(2θ+
| π |
| 3 |
| 2 |
| 3 |
∵θ∈(
| π |
| 3 |
| 7π |
| 12 |
| π |
| 3 |
| 3π |
| 2 |
∴sin(2θ+
| π |
| 3 |
1-cos2(2θ+
|
| ||
| 3 |
∴cos2θ=cos[(2θ+
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
=
| 1 |
| 2 |
| 2 |
| 3 |
| ||
| 2 |
| ||
| 3 |
2+
| ||
| 6 |
点评:本题考查三角函数公式,涉及三角函数的单调性以及同角三角函数的基本关系,属中档题.
练习册系列答案
相关题目