题目内容

已知函数f(x)=
3
sinxcosx
+
1
2
cos2x,
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦函数的图象
专题:计算题,三角函数的求值,三角函数的图像与性质
分析:运用二倍角的正弦公式和两角和的正弦公式,化简f(x),再由正弦函数的周期公式,以及正弦函数的增区间,解不等式,即可得到所求区间.
解答: 解:函数f(x)=
3
sinxcosx
+
1
2
cos2x
=
3
2
sin2x+
1
2
cos2x=sin(2x+
π
6
),
(1)函数f(x)的最小正周期T=
2
=π;
(2)令2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2

解得,kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,
则函数f(x)的单调递增区间为[kπ-
π
3
,kπ+
π
6
],k∈Z.
点评:本题考查二倍角公式和两角和的正弦公式的运用,考查正弦函数的周期公式和单调增区间,考查运算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网