题目内容

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=
3
,延长CE交AB于点F,证明DC∥AB.
考点:圆內接多边形的性质与判定
专题:选作题,立体几何
分析:(1)连接DE.由于DB垂直BE交圆于点D,可得∠DBE=90°.即DE为圆的直径.由于∠ABC的角平分线BE交圆于点E,利用同圆中的弧圆周角弦之间的关系可得∠DCB=∠DBC,DB=DC.
(II)证明CF⊥AB,DC⊥CF,即可证明DC∥AB.
解答: (1)证明:如图所示,连接DE.
∵DB垂直BE交圆于点D,∴∠DBE=90°.
∴DE为圆的直径.
∵∠ABC的角平分线BE交圆于点E,
BE
=
CE

DB
=
DC

∴∠DCB=∠DBC,
∴DB=DC.
(2)解:由(1)可知:∠CDE=∠BDE,DE⊥BC,且平分BC,设中点为M,外接圆的圆心为点O.
连接OB,OC,则OB⊥AB.
在Rt△BOM中,OB=1,BM=
1
2
BC=
3
2

∴∠BOM=60°
∴∠ABE=∠BCE=∠CBE=30°,
∴CF⊥AB
∵∠DCE=90°,
∴DC⊥CF,
∴DC∥AB.
点评:本题综合考查了圆的切线的性质、同圆中的弧圆周角弦之间的关系、垂径定理及其推论、直角三角形外接圆的性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网