题目内容
10.已知|AB|=3,A、B分别在x轴和y轴上滑动,O为坐标原点,$\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}$,则动点P的轨迹方程是$\frac{{x}^{2}}{4}+{y}^{2}=1$.分析 设A(a,0),B(O,b),P(x,y).由|AB|=3,可得a2+b2=9.由于$\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}$,可得a、b关系.消去a,b即可得出动点P的轨迹方程.
解答 解:设A(a,0),B(O,b),P(x,y).
∵|AB|=3,∴$\sqrt{{a}^{2}+{b}^{2}}$=3,化为a2+b2=9.
∵$\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}$,
∴(x,y)=$\frac{2}{3}$(a,0)+$\frac{1}{3}$(0,b)=($\frac{2}{3}$a,$\frac{1}{3}$b).∴x=$\frac{2}{3}a$,y=$\frac{1}{3}b$.可得a=$\frac{3}{2}x$,b=3y,代入a2+b2=9,
∴$\frac{{x}^{2}}{4}+{y}^{2}=1$,
∴动点P的轨迹方程是$\frac{{x}^{2}}{4}+{y}^{2}=1$,
故答案为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
点评 本题考查了向量的线性运算、向量相等、两点之间的距离公式,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目
3.甲乙丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,若开始时球在甲手中,则经过三次传球后,球传回甲手中的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
1.已知点O在△ABC的内部,且满足$\overrightarrow{OA}$+3$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,则△ABC的面积与△AOC的面积之比是( )
| A. | 1 | B. | 3 | C. | 2 | D. | $\frac{3}{2}$ |
2.条件p:不等式$\frac{x-3}{x+1}≤0$的解;条件q:不等式x2-2x-3<0的解,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |