题目内容
对实数和定义运算“”:设函数,若函数恰有两个不同的零点,则实数的取值范围是( )
A、
B、
C、
D、
已知是上的增函数,若关于的方程有且只有一个实根,则实数的取值范围是 .
(本小题满分12分)
已知等差数列的公差为,前项和为,且.
(1)求数列的通项公式与前项和;
(2)将数列的前四项抽取其中一项后,剩下三项按原来顺序恰为等比数列的前三项,记数列的前项和为,若存在,使得对任意,总有成立,求实数的取值范围.
设函数,那么函数的零点的个数为 .
与圆和圆都相切的圆的圆心轨迹是( )
A.椭圆
B.椭圆和双曲线的一支
C.双曲线和一条直线(去掉几个点)
D.双曲线的一支和一条直线(去掉几个点)
数列是首项的等比数列,且成等差数列,则其公比为( )
A、1或-1 B、-1 C、1 D、
如图,在几何体中,四边形均为边长为1的正方形.
(1)求证:.
(2)求该几何体的体积.
小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系,轴在地平面上的球场中轴线上,轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程表示的曲线上,其中与发射方向有关.发射器的射程是指网球落地点的横坐标.
(1)求发射器的最大射程;
(2)请计算在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标最大为多少?并请说明理由.
执行右面的程序框图,如果输入的,则输出的属于( )
A、 B、 C、 D、