题目内容
设向量,若,则实数 .
(本小题满分12分)设椭圆C:,F1,F2为左、右焦点,B为短轴端点,且S△BF1F2=4,离心率为,O为坐标原点.
(Ⅰ)求椭圆C的方程,
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M,N,且满足?若存在,求出该圆的方程,若不存在,说明理由.
(本小题满分14分)已知椭圆G的离心率为,其短轴的两端点分别为A(0,1),B(0,-1).
(Ⅰ)求椭圆G的方程;
(Ⅱ)若C,D是椭圆G上关于y轴对称的两个不同点,直线与轴分别交于点.试判断以为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.
下列函数是奇函数,并且在定义域上是增函数的是( )
A. B. C. D.
(本小题满分13分)在中,角所对的边分别为,已知, .
(Ⅰ)求的值;
(Ⅱ)求的值.
若,则的取值范围是
(本小题满分14分)如图1,在梯形中,,,,四边形是矩形.将矩形沿折起到四边形的位置,使平面平面,为的中点,如图2.
(Ⅰ)求证:;
(Ⅱ)求证://平面;
(Ⅲ)判断直线与的位置关系,并说明理由.
已知集合,,则( )
(A) (B) (C) (D)
的值是( )
A. B. C. D.