题目内容
(2008•闸北区一模)已知数列{an}和{bn}满足:a1=λ,an+1=
an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.Sn为数列{bn}的前n项和.
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn.
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
| 2 | 3 |
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn.
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
分析:(1)假设存在一个实数?,使{an}是等比数列,由题意知(
λ-3)2=λ(
λ-4)?
λ2 -4λ+9=
λ2-4λ?9=0,矛盾.所以{an}不是等比数列.
(2)研究数列相邻两项,看相邻项的关系,以确定数列bn的性质,然后求出其通项公式;最后根据等比数列的求和公式并求Sn
(3)求出数列的前n项和,然后根据形式结合指数函数的性质求出其最值,则参数的范围易知.
| 2 |
| 3 |
| 4 |
| 9 |
| 4 |
| 9 |
| 4 |
| 9 |
(2)研究数列相邻两项,看相邻项的关系,以确定数列bn的性质,然后求出其通项公式;最后根据等比数列的求和公式并求Sn
(3)求出数列的前n项和,然后根据形式结合指数函数的性质求出其最值,则参数的范围易知.
解答:证明:(1)假设存在一个实数?,使{an}是等比数列,则有a22=a1a3,
即(
λ-3)2=λ(
λ-4)?
λ2-4λ+9=
λ2-4λ?9=0,
矛盾.所以{an}不是等比数列.
(2)因为bn+1=(-1)n+1[an+1-3(n+1)+21]=(-1)n+1(
an-2n+14)
=-
(-1)n•(an-3n+21)=-
bn
当λ≠-18时,b1=-(λ+18)≠0,由上可知bn≠0,
∴
=-
(n∈N+).
故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-
为公比的等比数列.bn=-(λ+18)•(-
)n-1,Sn=-
(λ+18)(1-(-
)n)
当λ=-18时,bn=0,Sn=0
(3)由(2)知,当λ=-18,bn=0,Sn=0,不满足题目要求.
∴λ≠-18,
要使a<Sn<b对任意正整数n成立,
即a<-
(λ+18)•[1-(-
)n]<b(n∈N+)…①
当n为正奇数时,1<f(n)≤
;当n为正偶数时,
≤f(n)<1,
∴f(n)的最大值为f(1)=
,f(n)的最小值为f(2)=
,
于是,由①式得
a<-
(λ+18)<
b?-b-18<λ<-3a-18.
当a<b≤3a时,由-b-18≥=-3a-18,不存在实数满足题目要求;
当b>3a存在实数λ,使得对任意正整数n,都有a<Sn<b,且λ的取值范围是(-b-18,-3a-18).
即(
| 2 |
| 3 |
| 4 |
| 9 |
| 4 |
| 9 |
| 4 |
| 9 |
矛盾.所以{an}不是等比数列.
(2)因为bn+1=(-1)n+1[an+1-3(n+1)+21]=(-1)n+1(
| 2 |
| 3 |
=-
| 2 |
| 3 |
| 2 |
| 3 |
当λ≠-18时,b1=-(λ+18)≠0,由上可知bn≠0,
∴
| bn+1 |
| bn |
| 2 |
| 3 |
故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-
| 2 |
| 3 |
| 2 |
| 3 |
| 3 |
| 5 |
| 2 |
| 3 |
当λ=-18时,bn=0,Sn=0
(3)由(2)知,当λ=-18,bn=0,Sn=0,不满足题目要求.
∴λ≠-18,
要使a<Sn<b对任意正整数n成立,
即a<-
| 3 |
| 5 |
| 2 |
| 3 |
|
当n为正奇数时,1<f(n)≤
| 5 |
| 3 |
| 5 |
| 9 |
∴f(n)的最大值为f(1)=
| 5 |
| 3 |
| 5 |
| 9 |
于是,由①式得
| 9 |
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
当a<b≤3a时,由-b-18≥=-3a-18,不存在实数满足题目要求;
当b>3a存在实数λ,使得对任意正整数n,都有a<Sn<b,且λ的取值范围是(-b-18,-3a-18).
点评:本题属于数列综合运用题,考查了由所给的递推关系证明数列的性质,对所给的递推关系进行研究求数列的递推公式以及利用数列的求和公式求其和,再由和的存在范围确定使得不等式成立的参数的取值范围,难度较大,综合性很强,对答题者探究的意识与探究规律的能力要求较高,是一道能力型题.
练习册系列答案
相关题目