ÌâÄ¿ÄÚÈÝ

8£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÓÉÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãÓëÁ½¸ö½¹µã¹¹³ÉÒ»¸öµÈ±ßÈý½ÇÐΣ®ËüµÄÃæ»ýΪ4$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖª¶¯µãB£¨m£¬n£©£¨mn¡Ù0£©ÔÚÍÖÔ²ÉÏ£¬µãA£¨0£¬2$\sqrt{3}$£©£¬Ö±ÏßAB½»xÖáÓÚµãD£¬µãB¡äΪµãB¹ØÓÚxÖáµÄ¶Ô³Æµã£¬Ö±ÏßAB¡ä½»xÖáÓÚµãE£¬ÈôÔÚyÖáÉÏ´æÔÚµãG£¨0£¬t£©£¬Ê¹µÃ¡ÏOGD=¡ÏOEG£¬ÇóµãGµÄ×ø±ê£®

·ÖÎö £¨1£©ÀûÓÃÍÖÔ²µÄ¶ÌÖáµÄÒ»¸ö¶ËµãºÍÁ½¸ö½¹µã¹¹³ÉµÈ±ßÈý½ÇÐεÄÈý¸ö¶¥µã£¬ËüµÄÃæ»ýΪ4$\sqrt{3}$£®½¨Á¢·½³Ì¹ØÏµ£¬Çó³öa£¬b£¬¼´¿ÉµÃÍÖÔ²·½³Ì£®
£¨2£©ÉèD£¨x1£¬0£©£¬E£¨x2£¬0£©£®ÓÉA£¬D£¬B£¬Èýµã¹²Ïߣ®µÃx1=$\frac{-2\sqrt{3}m}{n-2\sqrt{3}}$£®Í¬Àí¿ÉµÃx2=$\frac{2\sqrt{3}m}{n-2\sqrt{3}}$£®ÓÖ¡ÏOGD=¡ÏOEG£¬µÃ$\frac{OD}{OG}=\frac{OG}{OE}£¬¼´O{G}^{2}=OD•OE$£®ÓÉÓÚ$\frac{{m}^{2}}{16}-\frac{{n}^{2}}{12}=1$£¬¹Ê${t}^{2}=\frac{12}{12-{n}^{2}}¡Á16£¨1-\frac{{n}^{2}}{12}£©=16$£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖªµÃ$\left\{\begin{array}{l}{a=2c}\\{\frac{1}{2}•2c•\sqrt{3}c=4\sqrt{3}}\end{array}\right.$£¬
¡à$a=4£¬b=2\sqrt{3}$£¬¡àÍÖÔ²CµÄ·½³Ì£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$£®
£¨2£©ÉèD£¨x1£¬0£©£¬E£¨x2£¬0£©£®
ÓÉA£¬D£¬B£¬Èýµã¹²Ïߣ®µÃ$\frac{0-2\sqrt{3}}{{x}_{1}}=\frac{n-2\sqrt{3}}{m}$£¬¼´x1=$\frac{-2\sqrt{3}m}{n-2\sqrt{3}}$£®
ͬÀí¿ÉµÃx2=$\frac{2\sqrt{3}m}{n-2\sqrt{3}}$£®
ÓÖ¡ß¡ÏOGD=¡ÏOEG£¬¡à$\frac{OD}{OG}=\frac{OG}{OE}£¬¼´O{G}^{2}=OD•OE$£®
¡ß-2$\sqrt{3}$$£¼n£¼2\sqrt{3}$£¬ÇÒn¡Ù0£¬¡à${t}^{2}=\frac{-12{m}^{2}}{{n}^{2}-12}=\frac{12{m}^{2}}{12-{n}^{2}}$£¬
ÓÉÓÚ$\frac{{m}^{2}}{16}-\frac{{n}^{2}}{12}=1$£¬¡à${t}^{2}=\frac{12}{12-{n}^{2}}¡Á16£¨1-\frac{{n}^{2}}{12}£©=16$£¬
¡àt=¡À4£¬µãGµÄ×ø±êΪ£¨0£¬¡À4£©£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬·½³Ì˼ÏëÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø