题目内容
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,
(Ⅰ)求曲线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)设点
,曲线
与曲线
交于
两点,求
的值.
【答案】(Ⅰ)
:
,
:
;(Ⅱ)![]()
【解析】
(Ⅰ)由代入法消去参数
,可得曲线
的普通方程为
,再由极坐标与直角坐标的互化公式,即可求解曲线
的直角坐标方程;
(Ⅱ)将直线的参数代入曲线
的直角坐标方程,得
,由韦达定理可得
,根据参数几何意义,即求解
的值.
(Ⅰ)曲线
的参数方程为
(
为参数),
由代入法消去参数
,可得曲线
的普通方程为
;
曲线
的极坐标方程为
,得
,即为
,
整理可得曲线
的直角坐标方程为
;
(Ⅱ)将
(
为参数),代入曲线
的直角坐标方程
,
得
,利用韦达定理可得
,
所以
.
【题目】已知圆
关于直线
对称,圆心C在第二象限,半径为
.
(1)求圆C的方程.
(2)是否存在直线l与圆C相切,且在x轴、y轴上的截距相等?若存在,写出满足条件的直线条数(不要求过程);若不存在,说明理由.
【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,![]()
【题目】某学校研究性学习小组对该校高三学生的视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如下直方图:
![]()
年级名次/是否近视 | 1-50 | 951-1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如上述表格中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系;
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
附:![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |