题目内容
已知、、是椭圆:上的三个点, 是坐标原点.
(I)当点是的右顶点,且四边形为菱形时,求此菱形的面积;
(II)当点不是的顶点时,判断四边形是否可能为菱形,并说明理由.
通过实验数据可知,某液体的蒸发速度(单位:升/小时)与液体所处环境的温度(单位:℃)近似地满足函数关系(为自然对数的底数,为常数). 若该液体在℃的蒸发速度是升/小时,在℃的蒸发速度为升/小时,则该液体在℃的蒸发速度为_____升/小时.
已知α,β是两个不同的平面,l,m是两条不同直线,l⊥α,m?β.给出下列命题:
①α∥β⇒l⊥m; ②α⊥β⇒l; ③m∥α⇒l⊥β; ④l⊥β⇒m∥α.
其中正确的命题是 . (填写所有正确命题的序号).
已知抛物线的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过点F,则该双曲线的离心率为( )
A. B.2 C.+1 D.-1
过抛物线的焦点的直线交抛物线于两点.若中点到抛物线准线的距离为6,则线段的长为( )
A. B. C. D.无法确定
已知抛物线C:与点,过C的焦点且斜率为的直线与C交于两点,若,则的值为
若实数满足,则的取值范围为 ( )
A. B.
C. D.
在平面直角坐标系中,椭圆的离心率,且点在椭圆上.
(1)求椭圆的方程;
(2)若点都在椭圆上,且中点在线段(不包括端点)上.
①求直线的斜率;
②求面积的最大值.
已知矩阵.
(1)求A 的逆矩阵A-1;
(2)求矩阵A的特征值、 和对应的一个特征向量.