ÌâÄ¿ÄÚÈÝ
1£®2016Äê1ÔÂ1ÈÕÆðÈ«¹úÍ³Ò»ÊµÊ©È«ÃæµÄÁ½º¢Õþ²ß£®ÎªÁ˽âÊÊÁäÃñÖÚ¶Ô·Å¿ªÉúÓý¶þÌ¥Õþ²ßµÄ̬¶È£¬Ä³ÊÐѡȡ70ºó80ºó×÷Ϊµ÷²é¶ÔÏó£¬Ëæ»úµ÷²éÁË100È˲¢¶Ôµ÷²é½á¹û½øÐÐͳ¼Æ£¬70ºó²»´òËãÉú¶þÌ¥µÄռȫ²¿µ÷²éÈËÊýµÄ15%£¬80ºó´òËãÉú¶þÌ¥µÄռȫ²¿±»µ÷²éÈËÊýµÄ45%£¬100ÈËÖй²ÓÐ75ÈË´òËãÉú¶þÌ¥£®£¨1£©¸ù¾Ýµ÷²éÊý¾Ý£¬ÅжÏÊÇ·ñÓÐ90%ÒÔÉϰÑÎÕÈÏΪ¡°Éú¶þÌ¥ÓëÄêÁäÓйء±£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÒÔÕâ100È˵ÄÑù±¾Êý¾Ý¹À¼Æ¸ÃÊеÄ×ÜÌåÊý¾Ý£¬ÇÒÒÔÆµÂʹÀ¼Æ¸ÅÂÊ£¬Èô´Ó¸ÃÊÐ70ºó¹«ÃñÖУ¨ÈËÊýºÜ¶à£©Ëæ»ú³éÈ¡3룬¼ÇÆäÖдòËãÉú¶þÌ¥µÄÈËÊýΪX£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁУ¬ÊýѧÆÚÍûE£¨X£©ºÍ·½²îD£¨X£©£®
²Î¿¼¹«Ê½£º
| P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨1£©¸ù¾ÝÁÐÁª±íÖеÄÊý¾Ý£¬¼ÆËãK2µÄÖµ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©X¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬X¡«B£¨3£¬$\frac{2}{3}$£©£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬¿ÉµÃXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃÄêÁäÓëÉú¶þÌ¥µÄÁÐÁª±íΪ£º
| Éú¶þÌ¥ | ²»Éú¶þÌ¥ | ºÏ¼Æ | |
| 70ºó | 30 | 15 | 45 |
| 80ºó | 45 | 10 | 55 |
| ºÏ¼Æ | 75 | 25 | 100 |
ËùÒÔÓÐ90%ÒÔÉϰÑÎÕÈÏΪ¡°Éú¶þÌ¥ÓëÄêÁäÓйء±£®¡£¨4·Ö£©
£¨2£©ÓÉÒÑÖªµÃ¸ÃÊÐ70ºó¡°Éú¶þÌ¥¡±µÄ¸ÅÂÊΪ$\frac{30}{45}=\frac{2}{3}$£¬ÇÒX¡«B£¨3£¬$\frac{2}{3}$£©¡£¨6·Ö£©
ËùÒÔ$P£¨{X-K}£©=C_3^k{£¨{\frac{2}{3}}£©^k}{£¨{1-\frac{2}{3}}£©^{3-k}}£¨{k=0£¬1£¬2£¬3}£©$
¹ÊXµÄ·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{27}$ | $\frac{2}{9}$ | $\frac{4}{9}$ | $\frac{8}{27}$ |
ËùÒÔE£¨X£©=3¡Á$\frac{2}{3}$=2£¬·½²îD£¨X£©=3¡Á$\frac{2}{3}$¡Á$\frac{1}{3}$=$\frac{2}{3}$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑ飬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÆÚÍû£¬¿¼²éѧÉúµÄÔĶÁÓë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®ÒÑÖªº¯Êý$f£¨x£©=3sin£¨¦Øx+\frac{¦Ð}{3}£©$µÄ×îСÕýÖÜÆÚΪ¦Ð£¬½«º¯Êýf£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪy=g£¨x£©£¬Ôò¹ØÓÚº¯ÊýΪy=g£¨x£©µÄÐÔÖÊ£¬ÏÂÁÐ˵·¨²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | g£¨x£©ÎªÆæº¯Êý | B£® | ¹ØÓÚÖ±Ïß$x=\frac{¦Ð}{2}$¶Ô³Æ | ||
| C£® | ¹ØÓڵ㣨¦Ð£¬0£©¶Ô³Æ | D£® | ÔÚ$£¨-\frac{¦Ð}{6}£¬\frac{¦Ð}{4}£©$ÉϵÝÔö |
6£®Èô¼¯ºÏA={x|log4x¡Ü$\frac{1}{2}$}£¬B={x|£¨x+3£©£¨ x-1£©¡Ý0}£¬ÔòA¡É£¨∁RB£©=£¨¡¡¡¡£©
| A£® | £¨0£¬1] | B£® | £¨0£¬1£© | C£® | [1£¬2] | D£® | [0£¬1] |
13£®
ijУij´ÎNÃûѧÉúµÄѧ¿ÆÄÜÁ¦²âÆÀ³É¼¨£¨Âú·Ö120·Ö£©µÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçÏ£¬ÒÑÖª·ÖÊýÔÚ100-110µÄѧÉúÊýÓÐ21ÈË£¨1£©Çó×ÜÈËÊýNºÍ·ÖÊýÔÚ110-115·ÖµÄÈËÊýn£®£»
£¨2£©ÏÖ×¼±¸´Ó·ÖÊýÔÚ110-115µÄnÃûѧÉú£¨Å®ÉúÕ¼$\frac{1}{3}$£©ÖÐÑ¡3λ·ÖÅ䏸AÀÏʦ½øÐÐÖ¸µ¼£¬ÉèËæ»ú±äÁ¿¦Î±íʾѡ³öµÄ3λѧÉúÖÐÅ®ÉúµÄÈËÊý£¬Çó¦ÎµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûE¦Î£»
£¨3£©ÎªÁË·ÖÎöij¸öѧÉúµÄѧϰ״̬£¬¶ÔÆäÏÂÒ»½×¶ÎµÄѧϰÌṩָµ¼½¨Ò飬¶ÔËûǰ7´Î¿¼ÊÔµÄÊýѧ³É¼¨x¡¢ÎïÀí³É¼¨y½øÐзÖÎö£¬¸ÃÉú7´Î¿¼ÊԳɼ¨Èç±í
ÒÑÖª¸ÃÉúµÄÎïÀí³É¼¨yÓëÊýѧ³É¼¨xÊÇÏßÐÔÏà¹ØµÄ£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì $\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£®Èô¸ÃÉúµÄÊýѧ³É¼¨´ïµ½130·Ö£¬ÇëÄã¹À¼ÆËûµÄÎïÀí³É¼¨´óÔ¼ÊǶàÉÙ£¿
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬yn£©£¬Æä»Ø¹é·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$µÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i-}\overline{x}£©^{2}}$£¬$\stackrel{¡Ä}{a}=\overline{y}-\stackrel{¡Ä}{b}\overline{x}$£®
£¨2£©ÏÖ×¼±¸´Ó·ÖÊýÔÚ110-115µÄnÃûѧÉú£¨Å®ÉúÕ¼$\frac{1}{3}$£©ÖÐÑ¡3λ·ÖÅ䏸AÀÏʦ½øÐÐÖ¸µ¼£¬ÉèËæ»ú±äÁ¿¦Î±íʾѡ³öµÄ3λѧÉúÖÐÅ®ÉúµÄÈËÊý£¬Çó¦ÎµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûE¦Î£»
£¨3£©ÎªÁË·ÖÎöij¸öѧÉúµÄѧϰ״̬£¬¶ÔÆäÏÂÒ»½×¶ÎµÄѧϰÌṩָµ¼½¨Ò飬¶ÔËûǰ7´Î¿¼ÊÔµÄÊýѧ³É¼¨x¡¢ÎïÀí³É¼¨y½øÐзÖÎö£¬¸ÃÉú7´Î¿¼ÊԳɼ¨Èç±í
| Êýѧ£¨x£© | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
| ÎïÀí£¨y£© | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬yn£©£¬Æä»Ø¹é·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$µÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i-}\overline{x}£©^{2}}$£¬$\stackrel{¡Ä}{a}=\overline{y}-\stackrel{¡Ä}{b}\overline{x}$£®
1£®ÒÑÖªÖ±Ïßy=axÊÇÇúÏßy=lnxµÄÇÐÏߣ¬ÔòʵÊýa=£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{2e}$ | C£® | $\frac{1}{e}$ | D£® | $\frac{1}{{e}^{2}}$ |