ÌâÄ¿ÄÚÈÝ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+4cos¦È}\\{y=2+4sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È+$\frac{3¦Ð}{4}$£©=7£®
£¨1£©ÇóÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©A£¬B·Ö±ðÊÇÔ²CºÍÖ±ÏßlÉϵ͝µã£¬Çó|AB|µÄ×îСֵ£®

·ÖÎö £¨1£©ÀûÓúÍÓë²î¹«Ê½´ò¿ª£¬¸ù¾Ý¦Ñcos¦È=x£¬¦Ñsin¦È=y¿ÉµÃÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©¸ù¾ÝÔ²CµÄ²ÎÊý·½³Ì£¬Çó³öÔ²ÐĺͰ뾶£¬|AB|µÄ×îСֵΪԲÐĵ½Ö±ÏߵľàÀëd-r¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È+$\frac{3¦Ð}{4}$£©=7£®
ÄÇô£º$\sqrt{2}¦Ñsin¦Ècos\frac{3¦Ð}{4}+\sqrt{2}¦Ñcos¦Èsin\frac{3¦Ð}{4}=7$£¬
¸ù¾Ý¦Ñcos¦È=x£¬¦Ñsin¦È=y¿ÉµÃ£º-y+x=7£®
¼´Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx-y=7£®
£¨2£©Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+4cos¦È}\\{y=2+4sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÆäÔ²ÐÄΪ£¨-1£¬2£©£¬°ë¾¶r=4£®
ÄÇô£ºÔ²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|-1+2-7|}{\sqrt{2}}=3\sqrt{2}$£®
¡àAB|µÄ×îСֵΪԲÐĵ½Ö±ÏߵľàÀëd-r£¬¼´$|AB{|}_{min}=d-r=3\sqrt{2}-4$£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì¡¢ÆÕͨ·½³ÌµÄ»¥»¯ÒÔ¼°Ó¦Ó㬿¼²éÁ˵㵽ֱÏߵľàÀ빫ʽ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø