题目内容
等比数列{cn}满足cn+1+cn=10•4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn.
(1)求an,Sn;
(2)数列{bn}满足bn=
,Tn为数列{bn}的前n项和,求Tn.
(1)求an,Sn;
(2)数列{bn}满足bn=
| 1 |
| 4Sn-1 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得c1+c2=10,c2+c3=40,从而得到公比q=4,进而得c1=2,由此能求出an,Sn.
(2)由bn=
=
(
-
),利用裂项求和法能求出数列{bn}的前n项和.
(2)由bn=
| 1 |
| 4n2-1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
解:(1)∵等比数列{cn}满足cn+1+cn=10•4n-1(n∈N*),
∴c1+c2=10,c2+c3=40,∴公比q=4,
∴c1+4c1=10,解得c1=2,
∴cn=2•4n-1=22n-1,
∴an=log222n-1=2n-1.
Sn=
=
=n2.
(2)由(1)知bn=
=
(
-
),
∴Tn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
∴c1+c2=10,c2+c3=40,∴公比q=4,
∴c1+4c1=10,解得c1=2,
∴cn=2•4n-1=22n-1,
∴an=log222n-1=2n-1.
Sn=
| n(a1+an) |
| 2 |
| n[1+(2n-1)] |
| 2 |
(2)由(1)知bn=
| 1 |
| 4n2-1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
点评:本题考查数列的通项公式、前n项和的求法,是中档题,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知tanα=3x,tanβ=3-x,α-β=
,则x=( )
| π |
| 6 |
| A、3 | ||
| B、1 | ||
C、
| ||
D、
|