题目内容

4.解关于x的不等式2log4(x-1)>log4[a(x-2)+1](a为常数且a>2)的解集.

分析 利用对数函数的单调性把已知不等式变形,由a的范围求得$2-\frac{1}{a}$的范围,求解不等式组得答案.

解答 解:原不等式等价于$\left\{\begin{array}{l}{x-1>0}\\{a(x-2)+1>0}\\{(x-1)^{2}>a(x-2)+1}\end{array}\right.$?$\left\{\begin{array}{l}{x>1}\\{x>2-\frac{1}{a}}\\{(x-a)(x-2)>0}\end{array}\right.$,
∵a>2,
∴$2-\frac{1}{a}-1=1-\frac{1}{a}>0$,则2-$\frac{1}{a}>1$,
从而不等式组等价于:$\left\{\begin{array}{l}{x>2-\frac{1}{a}}\\{x>a或x<2}\end{array}\right.$,即x>a或$2-\frac{1}{a}<x<2$.
∴不等式的解集为{x|x>a或$2-\frac{1}{a}<x<2$}.

点评 本题考查对数不等式的解法,考查了交集及其运算,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网