ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¬×ó¡¢ÓÒ¶¥µã·Ö±ðΪA£¬B£¬¹ýµãFÇÒÇãб½ÇΪ
µÄÖ±Ïßl½»ÍÖÔ²ÓÚC£¬DÁ½µã£¬ÍÖÔ²CµÄÀëÐÄÂÊΪ
£¬
•
-
•
=-
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôP1£¬P2ÊÇÍÖÔ²Éϲ»Í¬Á½µã£¬P1£¬P2¡ÍxÖᣬԲR¹ýµãP1£¬P2£¬ÇÒÍÖÔ²ÉÏÈÎÒâÒ»µã¶¼²»ÔÚÔ²RÄÚ£¬Ôò³ÆÔ²RΪ¸ÃÍÖÔ²µÄÄÚÇÐÔ²£®ÎÊÍÖÔ²CÊÇ·ñ´æÔÚ¹ýµãFµÄÄÚÇÐÔ²£¿Èô´æÔÚ£¬Çó³öµãRµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
| x2 |
| a2 |
| y2 |
| b2 |
| ¦Ð |
| 4 |
| ||
| 2 |
| AC |
| AD |
| BC |
| BD |
32
| ||
| 5 |
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôP1£¬P2ÊÇÍÖÔ²Éϲ»Í¬Á½µã£¬P1£¬P2¡ÍxÖᣬԲR¹ýµãP1£¬P2£¬ÇÒÍÖÔ²ÉÏÈÎÒâÒ»µã¶¼²»ÔÚÔ²RÄÚ£¬Ôò³ÆÔ²RΪ¸ÃÍÖÔ²µÄÄÚÇÐÔ²£®ÎÊÍÖÔ²CÊÇ·ñ´æÔÚ¹ýµãFµÄÄÚÇÐÔ²£¿Èô´æÔÚ£¬Çó³öµãRµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÀëÐÄÂÊΪ
£¬µÃa=2b£¬c=
b£¬Ö±ÏßlµÄ·½³ÌΪy=x+
b£¬ÓÉ·½³Ì×é
£¬µÃ5x2+8
bx+8b2=0£¬ÓÉ´ËÀûÓÃÒÑÖªÌõ¼þÄÜÇó³öÍÖÔ²·½³Ì£®
£¨2£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬µãRÔÚxÖáÉÏ£¬ÉèµãR£¨t£¬0£©£¬Ô²RµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬ÓÉ´ËÀûÓÃÄÚÇÐÔ²¶¨Òå½áºÏÒÑÖªÌõ¼þÄÜÇó³öÍÖÔ²C´æÔÚ·ûºÏÌõ¼þµÄÄÚÇÐÔ²£¬µãRµÄ×ø±êÊÇ£¨-
£¬0£©£®
| ||
| 2 |
| 3 |
| 3 |
|
| 3 |
£¨2£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬µãRÔÚxÖáÉÏ£¬ÉèµãR£¨t£¬0£©£¬Ô²RµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬ÓÉ´ËÀûÓÃÄÚÇÐÔ²¶¨Òå½áºÏÒÑÖªÌõ¼þÄÜÇó³öÍÖÔ²C´æÔÚ·ûºÏÌõ¼þµÄÄÚÇÐÔ²£¬µãRµÄ×ø±êÊÇ£¨-
| ||
| 2 |
½â´ð£º
½â£º£¨1£©ÒòΪÀëÐÄÂÊΪ
£¬ËùÒÔa=2b£¬c=
b£¬
ËùÒÔÍÖÔ²·½³Ì¿É»¯Îª£º
+
=1£¬
Ö±ÏßlµÄ·½³ÌΪy=x+
b£¬¡£¨2·Ö£©
ÓÉ·½³Ì×é
£¬µÃ£ºx2+4(x+
b)2=4b2£¬
¼´5x2+8
bx+8b2=0£¬¡£¨4·Ö£©
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ôòx1+x2=-
b£¬¡£¨5·Ö£©
ÓÖ
•
-
•
=£¨x1+a£¬y1£©•£¨x2+a£¬y2£©-£¨x1-a£¬y1£©•£¨x2-a£¬y2£©=2a£¨x1+x2£©£¬
¡à4b•£¨-
b£©=-
£¬½âµÃb=1£¬
¡àÍÖÔ²·½³ÌÊÇ
+y2=1£®¡£¨7·Ö£©
£¨2£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬¿ÉÒÔÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬
µãRÔÚxÖáÉÏ£¬ÉèµãR£¨t£¬0£©£¬
ÔòÔ²RµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬
ÓÉÄÚÇÐÔ²¶¨ÒåÖªµÀ£¬ÍÖÔ²Éϵĵ㵽µãR¾àÀëµÄ×îСֵÊÇ|P1R|£¬
ÉèµãM£¨x£¬y£©ÊÇÍÖÔ²CÉÏÈÎÒâÒ»µã£¬
Ôò|MR|2=£¨x-t£©2+y2=
x2-2tx+t2+1£¬¡£¨9·Ö£©
µ±x=mʱ£¬|MR|2×îС£¬¡àm=-
=
£¬¢Ù¡£¨10·Ö£©
ÓÖÔ²R¹ýµãF£¬ËùÒÔ£¨-
-t£©2=£¨m-t£©2+n2£¬¢Ú¡£¨11·Ö£©
µãP1ÔÚÍÖÔ²ÉÏ£¬¡àn2=1-
£¬¢Û¡£¨12·Ö£©
ÓÉ¢Ù¢Ú¢Û½âµÃ£ºt=-
»òt=-
£¬
ÓÖt=-
ʱ£¬m=
£¼-2£¬²»ºÏÌâÒ⣬
×ÛÉÏ£ºÍÖÔ²C´æÔÚ·ûºÏÌõ¼þµÄÄÚÇÐÔ²£¬µãRµÄ×ø±êÊÇ£¨-
£¬0£©£®¡£¨13·Ö£©
| ||
| 2 |
| 3 |
ËùÒÔÍÖÔ²·½³Ì¿É»¯Îª£º
| x2 |
| 4b2 |
| y2 |
| b2 |
Ö±ÏßlµÄ·½³ÌΪy=x+
| 3 |
ÓÉ·½³Ì×é
|
| 3 |
¼´5x2+8
| 3 |
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ôòx1+x2=-
8
| ||
| 5 |
ÓÖ
| AC |
| AD |
| BC |
| BD |
¡à4b•£¨-
8
| ||
| 5 |
32
| ||
| 5 |
¡àÍÖÔ²·½³ÌÊÇ
| x2 |
| 4 |
£¨2£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬¿ÉÒÔÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬
µãRÔÚxÖáÉÏ£¬ÉèµãR£¨t£¬0£©£¬
ÔòÔ²RµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬
ÓÉÄÚÇÐÔ²¶¨ÒåÖªµÀ£¬ÍÖÔ²Éϵĵ㵽µãR¾àÀëµÄ×îСֵÊÇ|P1R|£¬
ÉèµãM£¨x£¬y£©ÊÇÍÖÔ²CÉÏÈÎÒâÒ»µã£¬
Ôò|MR|2=£¨x-t£©2+y2=
| 3 |
| 4 |
µ±x=mʱ£¬|MR|2×îС£¬¡àm=-
| -2t | ||
|
| 4t |
| 3 |
ÓÖÔ²R¹ýµãF£¬ËùÒÔ£¨-
| 3 |
µãP1ÔÚÍÖÔ²ÉÏ£¬¡àn2=1-
| m2 |
| 4 |
ÓÉ¢Ù¢Ú¢Û½âµÃ£ºt=-
| ||
| 2 |
| 3 |
ÓÖt=-
| 3 |
-4
| ||
| 3 |
×ÛÉÏ£ºÍÖÔ²C´æÔÚ·ûºÏÌõ¼þµÄÄÚÇÐÔ²£¬µãRµÄ×ø±êÊÇ£¨-
| ||
| 2 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÍÖÔ²µÄÄÚÇÐÔ²ÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÈôʵÊýx£¬yÂú×ã
£¬Ôòz=2x-yµÄ×îСֵÊÇ£¨¡¡¡¡£©
|
| A¡¢1 | ||
| B¡¢0 | ||
| C¡¢-1 | ||
D¡¢-
|