ÌâÄ¿ÄÚÈÝ

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¬×ó¡¢ÓÒ¶¥µã·Ö±ðΪA£¬B£¬¹ýµãFÇÒÇãб½ÇΪ
¦Ð
4
µÄÖ±Ïßl½»ÍÖÔ²ÓÚC£¬DÁ½µã£¬ÍÖÔ²CµÄÀëÐÄÂÊΪ
3
2
£¬
AC
AD
-
BC
BD
=-
32
3
5
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôP1£¬P2ÊÇÍÖÔ²Éϲ»Í¬Á½µã£¬P1£¬P2¡ÍxÖᣬԲR¹ýµãP1£¬P2£¬ÇÒÍÖÔ²ÉÏÈÎÒâÒ»µã¶¼²»ÔÚÔ²RÄÚ£¬Ôò³ÆÔ²RΪ¸ÃÍÖÔ²µÄÄÚÇÐÔ²£®ÎÊÍÖÔ²CÊÇ·ñ´æÔÚ¹ýµãFµÄÄÚÇÐÔ²£¿Èô´æÔÚ£¬Çó³öµãRµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÀëÐÄÂÊΪ
3
2
£¬µÃa=2b£¬c=
3
b
£¬Ö±ÏßlµÄ·½³ÌΪy=x+
3
b
£¬ÓÉ·½³Ì×é
x2
4b2
+
y2
b2
=1
y=x+
3
b
£¬µÃ5x2+8
3
bx+8b2=0
£¬ÓÉ´ËÀûÓÃÒÑÖªÌõ¼þÄÜÇó³öÍÖÔ²·½³Ì£®
£¨2£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬µãRÔÚxÖáÉÏ£¬ÉèµãR£¨t£¬0£©£¬Ô²RµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬ÓÉ´ËÀûÓÃÄÚÇÐÔ²¶¨Òå½áºÏÒÑÖªÌõ¼þÄÜÇó³öÍÖÔ²C´æÔÚ·ûºÏÌõ¼þµÄÄÚÇÐÔ²£¬µãRµÄ×ø±êÊÇ£¨-
3
2
£¬0
£©£®
½â´ð£º ½â£º£¨1£©ÒòΪÀëÐÄÂÊΪ
3
2
£¬ËùÒÔa=2b£¬c=
3
b
£¬
ËùÒÔÍÖÔ²·½³Ì¿É»¯Îª£º
x2
4b2
+
y2
b2
=1
£¬
Ö±ÏßlµÄ·½³ÌΪy=x+
3
b
£¬¡­£¨2·Ö£©
ÓÉ·½³Ì×é
x2
4b2
+
y2
b2
=1
y=x+
3
b
£¬µÃ£ºx2+4(x+
3
b)2=4b2
£¬
¼´5x2+8
3
bx+8b2=0
£¬¡­£¨4·Ö£©
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ôòx1+x2=-
8
3
5
b
£¬¡­£¨5·Ö£©
ÓÖ
AC
AD
-
BC
BD
=£¨x1+a£¬y1£©•£¨x2+a£¬y2£©-£¨x1-a£¬y1£©•£¨x2-a£¬y2£©=2a£¨x1+x2£©£¬
¡à4b•£¨-
8
3
5
b
£©=-
32
3
5
£¬½âµÃb=1£¬
¡àÍÖÔ²·½³ÌÊÇ
x2
4
+y2=1
£®¡­£¨7·Ö£©
£¨2£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬¿ÉÒÔÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬
µãRÔÚxÖáÉÏ£¬ÉèµãR£¨t£¬0£©£¬
ÔòÔ²RµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬
ÓÉÄÚÇÐÔ²¶¨ÒåÖªµÀ£¬ÍÖÔ²Éϵĵ㵽µãR¾àÀëµÄ×îСֵÊÇ|P1R|£¬
ÉèµãM£¨x£¬y£©ÊÇÍÖÔ²CÉÏÈÎÒâÒ»µã£¬
Ôò|MR|2=£¨x-t£©2+y2=
3
4
x2-2tx+t2+1
£¬¡­£¨9·Ö£©
µ±x=mʱ£¬|MR|2×îС£¬¡àm=-
-2t
3
2
=
4t
3
£¬¢Ù¡­£¨10·Ö£©
ÓÖÔ²R¹ýµãF£¬ËùÒÔ£¨-
3
-t
£©2=£¨m-t£©2+n2£¬¢Ú¡­£¨11·Ö£©
µãP1ÔÚÍÖÔ²ÉÏ£¬¡àn2=1-
m2
4
£¬¢Û¡­£¨12·Ö£©
ÓÉ¢Ù¢Ú¢Û½âµÃ£ºt=-
3
2
»òt=-
3
£¬
ÓÖt=-
3
ʱ£¬m=
-4
3
3
£¼-2
£¬²»ºÏÌâÒ⣬
×ÛÉÏ£ºÍÖÔ²C´æÔÚ·ûºÏÌõ¼þµÄÄÚÇÐÔ²£¬µãRµÄ×ø±êÊÇ£¨-
3
2
£¬0
£©£®¡­£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÍÖÔ²µÄÄÚÇÐÔ²ÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø