ÌâÄ¿ÄÚÈÝ

3£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãΪF£¨1£¬0£©£®
£¨1£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨2£©ÉèµãOÎª×ø±êÔ­µã£¬¹ýµãF×÷Ö±ÏßlÓëÍÖÔ²E½»ÓÚM£¬NÁ½µã£¬Èô$\overrightarrow{OM}•\overrightarrow{ON}=0$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄ¼¸ºÎÐÔÖÊ£¬Çó³öa¡¢bµÄÖµ¼´¿É£»
£¨2£©ÌÖÂÛÖ±ÏßMNµÄбÂÊÊÇ·ñ´æÔÚ£¬Éè³öMNµÄ·½³Ì£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ£¬½áºÏ$\overrightarrow{OM}•\overrightarrow{ON}=0$£¬Çó³öÖ±ÏßµÄбÂÊk£¬¼´¿ÉÇó³öÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨1£©ÒÀÌâÒâÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãΪF£¨1£¬0£©£®µÃ£¬c=1£¬
¡à$\frac{1}{a}=\frac{\sqrt{2}}{2}$£¬½âµÃa=$\sqrt{2}$£¬Ôòb=1£»¡­£¨2·Ö£©
¡àÍÖÔ²EµÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»¡­£¨4·Ö£©
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
¢Ùµ±MN´¹Ö±ÓÚxÖáʱ£¬MNµÄ·½³ÌΪx=1£¬²»·ûÌâÒ⣻¡­£¨5·Ö£©
¢Úµ±MN²»´¹Ö±ÓÚxÖáʱ£¬ÉèMNµÄ·½³ÌΪy=k£¨x-1£©£»¡­£¨6·Ö£©
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=k£¨x-1£©}\end{array}\right.$£¬ÏûÈ¥yµÃ£º[1+2k2]x2-4k2x+2£¨k2-1£©=0£¬¡­£¨8·Ö£©
¡àx1+x2=$\frac{4{x}^{2}}{1+2{k}^{2}}$£¬x1•x2=$\frac{2£¨{k}^{2}-1£©}{1+2{k}^{2}}$£»¡­£¨10·Ö£©
¡ày1•y2=k2£¨x1-1£©£¨x2-1£©k2[x1x2-£¨x1+x2£©+1]=$\frac{-{k}^{2}}{1+2{k}^{2}}$£»
ÓÖ¡ß$\overrightarrow{OM}•\overrightarrow{ON}=0$£»
¡àx1•x2+y1y2=$\frac{{k}^{2}-2}{1+2{k}^{2}}$=0£¬
½âµÃk=¡À$\sqrt{2}$£¬¡­£¨13·Ö£©
¡àÖ±ÏßlµÄ·½³ÌΪ£ºy=¡À$\sqrt{2}$£¨x-1£©£®¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¼¸ºÎÐÔÖʵÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄÓ¦ÓÃÎÊÌ⣬¸ùÓëϵÊý¹ØÏµµÄÓ¦ÓÃÎÊÌâ£¬Æ½ÃæÏòÁ¿µÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø