题目内容
8.已知圆C过点A(1,-3),且与圆M:(x+1)2+y2=r2(r>0)关于直线x-y-2=0对称.(1)求圆C的标准方程;
(2)设B为圆C上一动点,求$\overrightarrow{AB}$•$\overrightarrow{MB}$的取值范围.
分析 (1)圆M:(x+1)2+y2=r2(r>0)的圆心为M(-1,0),设M关于直线x-y-2=0对称的点C(a,b).则$\left\{\begin{array}{l}{\frac{-1+a}{2}-\frac{b}{2}-2=0}\\{\frac{b}{a+1}×1=-1}\end{array}\right.$,解出C,进而得到⊙C的半径r,可得圆C的标准方程.
(2)设B(2+cosθ,-3+sinθ),可得$\overrightarrow{AB}$•$\overrightarrow{MB}$=(1+cosθ,sinθ)•(3+cosθ,-3+sinθ)=4-$\sqrt{13}$sin(θ-β),即可得出.
解答 解:(1)圆M:(x+1)2+y2=r2(r>0)的圆心为M(-1,0),设M关于直线x-y-2=0对称的点C(a,b).
则$\left\{\begin{array}{l}{\frac{-1+a}{2}-\frac{b}{2}-2=0}\\{\frac{b}{a+1}×1=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\{b=-3}\end{array}\right.$.
∴C(2,-3),可得⊙C的半径r=$\sqrt{(2-1)^{2}+(-3+3)^{2}}$=1,
∴圆C的标准方程为(x-2)2+(y+3)2=1.
(2)设B(2+cosθ,-3+sinθ),
则$\overrightarrow{AB}$•$\overrightarrow{MB}$=(1+cosθ,sinθ)•(3+cosθ,-3+sinθ)
=(1+cosθ)(3+cosθ)+sinθ(-3+sinθ)
=4+3cosθ-2sinθ=4-$\sqrt{13}$sin(θ-β)∈$[4-\sqrt{13},4+\sqrt{13}]$.
点评 本题考查了圆的标准方程、点关于直线的对称点、向量数量积运算性质、三角函数求值、和差公式,考查了推理能力与计算能力,属于中档题.
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
| A. | 0 | B. | C${\;}_{100}^{3}$ | C. | -2C${\;}_{100}^{3}$ | D. | 2100 |
| A. | 2 | B. | 4 | C. | 8 | D. | 2$\sqrt{2}$ |
| A. | 1 | B. | $\frac{{\sqrt{3}+\sqrt{5}}}{2}$ | C. | $\sqrt{8\sqrt{2}-7}$ | D. | 2 |