题目内容
一个棱锥的三视图如图(单位为cm),则该棱锥的体积是( )

A、
| ||
B、
| ||
| C、2cm3 | ||
| D、4cm3 |
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图可知:原几何体是一个三棱锥,其中侧面PAC⊥底面ABC,PA=PC,AB=BC,AO=OC=1,PO=BO=2.据此即可计算出体积.
解答:
解:由三视图可知:原几何体是一个三棱锥,其中侧面PAC⊥底面ABC,PA=PC,
AB=BC,AO=OC=1,PO=BO=2.
∴V三棱锥P-ABC=
×
×2×2×2=
cm3.
故选A.
AB=BC,AO=OC=1,PO=BO=2.
∴V三棱锥P-ABC=
| 1 |
| 3 |
| 1 |
| 2 |
| 4 |
| 3 |
故选A.
点评:由三视图正确原几何体是解题的关键.
练习册系列答案
相关题目
执行如图程序,输出的结果为( )

A、
| ||
B、
| ||
C、
| ||
D、
|
双曲线
-
=1的离心率是( )
| x2 |
| 2 |
| y2 |
| 2 |
| A、1 | ||
B、
| ||
| C、2 | ||
D、2
|
从长度为1,3,5,7个单位的四条线段中任取三条作边,能组成三角形的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
设函数f(x)是定义在R上周期为2的函数,且对任意的实数x,恒有f(x)-f(-x)=0,当x∈[-1,0],f(x)=x2e-(x+1).若g(x)=f(x)-logax在x∈(0,+∞)有且仅有三个零点,则a的取值范围为( )
| A、[3,5] |
| B、[4,6] |
| C、(3,5) |
| D、(4,6) |