题目内容
(本小题满分12分)
如图,在三棱锥中,平面,为的中点,分别为线段上的动点,且。
(1)求证:面;
(2)若是的中点,是线段靠近的一个三等分点,求二面角的余弦值。
(本小题满分12分)已知数列{an}的首项al=1,.
(1)证明:数列是等比数列;
(2)设,求数列的前n项和.
(本小题满分10分)
已知函数的定义域为.
(1)求实数的取值范围;
(2)当正数满足时,求的最小值.
(本小题满分12分)
已知椭圆的方程为,离心率,过焦点且与长轴垂直的直线被椭圆所截得线段长为1.
(1)求椭圆的方程;
(2),,为曲线上的三个动点, 在第一象限, ,关于原点对称,且,问的面积是否存在最小值?若存在,求出此时点的坐标;若不存在,请说明理由.
如图,在三棱柱中,平面,,,.
(1)过的截面交于点,若为等边三角形,求出点的位置;
(2)在(1)条件下,求平面与平面所成二面角的大小.
【选修4-5:不等式选讲】
设函数f(x)=|2x﹣1|﹣|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若?x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.
【选修4-1:几何证明选讲】
(10分)如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边上的中点,连接OD交圆O与点M.
(1)求证:DE是圆O的切线;
(2)求证:DE•BC=DM•AC+DM•AB.
函数的单调递增区间是 .
若,且;关于的一元二次方程:的一个根大于零,另一个根小于零,则是的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分条件也不必要条件