题目内容

8.抛物线y2=8x的准线与双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1的两条渐近线所围成的三角形面积为2$\sqrt{2}$.

分析 求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.

解答 解:抛物线y2=8x的准线为x=-2,
双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1的两条渐近线为y=±$\frac{\sqrt{2}}{2}$x,
可得两交点为(-2,$\sqrt{2}$),(-2,-$\sqrt{2}$),
即有三角形的面积为$\frac{1}{2}$×2×2$\sqrt{2}$=2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网