题目内容
6.已知a,b,c分别为△ABC三个内角A,B,C的对边,且b2-ac=a2.(1)求证:sinB=sin2A;
(2)若A=$\frac{π}{12}$,a=1,求c的值.
分析 (1)利用正弦定理边化角,使用和差化积公式和二倍角公式化简得出A,B的关系;
(2)利用(1)的结论得出A,B,计算C,使用正弦定理得出c.
解答 解:∵b2-ac=a2,∴b2-a2=ac,即sin2B-sin2A=sinAsinC.
∴(sinB+sinA)(sinB-sinA)=sinAsinC.
∴2sin$\frac{B+A}{2}$cos$\frac{B-A}{2}$×2cos$\frac{B-A}{2}$sin$\frac{B+A}{2}$=sinAsinC.
∴sin(B+A)sin(B-A)=sinAsinC.
∵sin(B+A)=sinC,
∴sin(B-A)=sinA.
∴B-A=A或B-A+A=π(舍).
∴B=2A.
∴sinB=sin2A.
(2)由(1)知B=2A=$\frac{π}{6}$,∴C=$π-\frac{π}{12}-\frac{π}{6}$=$\frac{3π}{4}$.
∴sinA=sin$\frac{π}{12}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,sinC=sin$\frac{3π}{4}$=$\frac{\sqrt{2}}{2}$.
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,
∴c=$\frac{asinC}{sinA}$=$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}-\sqrt{2}}{4}}$=$\sqrt{3}$+1.
点评 本题考查了三角函数的恒等变换,正弦定理,属于中档题.
练习册系列答案
相关题目
16.命题“?x∈R,sinx>1”的否定是( )
| A. | ?x∈R,sinx≤1 | B. | ?x∈R,sinx>1 | C. | ?x∈R,sinx=1 | D. | ?x∈R,sinx≤1 |
1.已知f′(x)是定义在R上的函数f(x)的导数,满足f′(x)+2f(x)>0,且f(-1)=0,则f(x)<0的解集为( )
| A. | (-∞,-1) | B. | (-1,1) | C. | (-∞,0) | D. | (-1,+∞) |
18.设实数a∈(1,2),关于x的一元二次不等式x2-(a2+3a+2)x+3a(a2+2)<0的解为( )
| A. | (3a,a2+2) | B. | (a2+2,3a) | C. | (3,4) | D. | (3,6) |
7.已知函数f(x)=|x-3|+2,g(x)=kx,若方程f(x)=g(x)有两个不相等实根,则实数k的范围( )
| A. | (0,$\frac{2}{3}$) | B. | ($\frac{2}{3}$,1) | C. | (1,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,+∞) |